時間:2023-09-22 10:31:07
導言:作為寫作愛好者,不可錯過為您精心挑選的10篇歐姆定律成立條件,它們將為您的寫作提供全新的視角,我們衷心期待您的閱讀,并希望這些內容能為您提供靈感和參考。
在物理復習的整個知識體系中,電學知識板塊兒尤為重要。一是:它占整個三式合一理化試題物理部分的40%左右,即70分中的近30分屬于物理電學試題。二是:電學知識在生產實踐中的重要作用已凸顯出來。而要學生全面掌握、領會初中階段電學知識,對于相當一部分初中生來說具有較大的難度。從教以來我聽過一些初中電學復習課:有的先把所要用到的電學公式板書在黑板上,再講典型例題,接著練習;有的則通過學生作題中所反饋的問題對知識進行補充強調,再練習;有的直接強調萬變不離其宗,讓學生多看教材,然后講例題等。復習中講例題沒錯,但選擇的例題過多,又無代表性,既延長了復習時間,又不能使學生的知識得到升華。久而久之,學生疲勞,老師厭煩。要使復習課在短時間內生動、奏效,應選擇恰當的例題,在講例題的基礎上,對知識進行歸納和升華。
復習課,一要體現“從生活走向物理,從物理走向社會”,教學方式多樣化等新課程理念;二要體現“知識與技能、過程與方法以及情感態度和價值觀”三維目標的培養;三要優化學生的認知結構,讓學生在教師的引導、幫助下,把學到的知識歸納起來,從而便于提練和記憶。所以對電學的復習要從學生喜聞樂見的小電器起步,從典型例題入手進行歸納總結。
例1:如圖-1是一個玩具汽車上的控制電路。小明對其進行測量和研究發現:電動機的線圈電阻為1Ω,保護電阻R為4Ω。當閉合S后,兩電壓表的示數分別為6V和2V,則電路中的電流為?搖 ?搖?搖?搖A,電動機的功率為?搖?搖 ?搖?搖W。(這是陜西師范大學出版社出版,經陜西省中小學教材審定委員會2008年審定通過的《物理課堂練習冊》中的一道題)
學生通常按下列方法計算電路中的電流:
R中的電流:I=U/R=2V/4Ω=0.5A,
電動機中的電流:I=U/R=4V/1Ω=4A,
由此得第一空電路中的電流就有兩個值0.5A和4A。
于是第二空的對應值為:P=UI=4V×0.5A=2W與P=UI=4V×4A=16W。這就存在兩個問題:
1.根據歐姆定律計算出兩個串聯元件中的電流不相等,與串聯電路中電流的特點相矛盾。
2.由串聯分壓原理得:U:U=R∶R=1∶4,得:
①當U=2V時,U=8V,得到U+U=2V+8V=10V≠U源;
②當UM′=4V時,U′=1V。U′+U=1V+4V=5V≠U,這與串聯電路中的電壓關系相矛盾。
對此,應找出題中所涉及的知識點,分析這些知識點間的聯系,那上面的矛盾就迎刃而解了。
首先,應對歐姆定律有深入的理解。
例2:如圖2所示電路(R≠R≠R)。引導學生分析如下:
1.對電路狀態的分析。
(1)當S、S、S都閉合時,R與R并聯,并聯后作為一個整體再與R串聯。A測R中的電流,V測R或R兩端電壓。
(2)當S、S閉合S斷開時,則由圖-2演變為圖-2(a)到(b)。
R與R串聯,R處于斷開狀態,A測整個電路中的電流。
(3)當S、S閉合S斷開時,則由圖2演變為圖-2(c)到(d)。
R與R串聯,R處于斷開狀態,V測R兩端電壓。
2.歐姆定律中涉及I、U、R三個量間的關系。
(1)歐姆定律中的I、U、R三個量是針對同一個用電器或者同一部分電路而言的,即必須滿足“同一性”。
當圖-2中的S、S、S都閉合時,A測R中的電流為I,V測R兩端電壓為U。此時能否用U與I的比值來計算R或R阻值呢?(即R=U/I)。
如果R=R時,由于R與R并聯,所以R兩端電壓U等于R兩端電壓U,即U=U=U。根據R=U/I得R=U/I,R=U/I。這樣計算出的R2的值雖然是正確的,但屬于不正確的方法得出了正確的結果,實屬偶然巧合。
若R≠R時,那么R=U/I,若再按R=U/I來計算R的電阻值就沒有上述的巧合了。因為電壓相等是并聯電路電壓的特點,R、R中的電流是不相等的。上述中錯誤地認為R、R中電流相等。這里的電壓是R兩端電壓,而電流是R中的電流,電壓與電流是兩個不同電阻(或用電器,或電路)的對應量,也就違背了“同一性”。
這就告訴我們,在應用歐姆定律解題時,一定要遵循“同一性”原則,切忌“張冠李戴”,電學中的所有公式都不能違背“同一性”原則。如:W=UIt、Q=IRt、P=UI等。
(2)歐姆定律中的I、U、R三個量必須是同一狀態、同一時刻存在的三個物理量,即必須滿足“同時性”。
在圖-2中,當S、S閉合時,R中的電流大小與S、S閉合時R中的電流大小是否相等?
在圖-2中,當S、S閉合S斷開時,不難看出,R與R串聯:I=I=I則I=U源/(R+R);當S、S閉合S斷開時,R與R串聯:I=I=I,則I=U/(R+R)。因為R+R≠R+R所以U源/(R+R)≠U源/(R+R),即兩次電流不相等。S、S閉合時,R中的電流大小與S、S閉合時R中的電流大小不相等,這是因為S、S閉合時與S、S閉合時電路狀態不同,R是在不同的狀態下工作,不是同一時間內電流的大小,電流不相等。
在利用公式計算的過程中,不能用第一狀態下的量值與第二狀態下的量值代入關系式計算。如:要計算R的電阻值,就不能用第一狀態下R兩端的電壓值與第二狀態下R中的電流的比值來計算R的電阻值。在計算電流、電壓時,也不能這樣處理。
因此在利用公式計算時,帶值入式的物理量必須是同一狀態下的物理量,必須滿足“同時性”。
(3)歐姆定律中的I、U、R三個量的單位必須同一到國際單位制,即I―A、U―V、R―Ω。即應滿足“統一性”。
除各物理量的主單位外,還應記住常用單位及其單位換算關系,將常用單位換算為國際單位制單位,在利用其它電學公式計算時也要統一單位。
如:電功的公式W=UIt中,各物理量的對應單位:U-V、I-A、t-S;這樣W的單位才是J。電熱的公式Q=IRt中:I―A、R―Ω、t―S;這樣Q的單位才是J。電功率的公式P=UI中:U-V、I-A,這樣P的單位才是W。
我們要確定歐姆定律的適用條件。
1.歐姆定律只對一段不含電源的導體成立,即只適用于純電阻電路。因此,歐姆定律又稱為一段不含源電路的歐姆定律。
例1中涉及到電磁轉換的知識,電動機工作時實質上也是一個發電機。電動機工作時,其閉合線圈切割磁感線會產生感應電流,所產生的感應電流對流過電動機線圈中的電流有一定影響。
實際上圖1相當于一個“RL”串聯電路,總電壓的有效值不等于各分電壓有效值的代數和,即U≠U+U。但得到的電流有效值的關系I=U/Z與直流(或部分)電路的歐姆定律相似,各元件上的分電壓與該元件的阻抗(Z)成正比。
雖然電動機工作時產生的阻抗目前初中階段無法計算出來,但無論電動機工作時產生的阻抗為多少,電路中的電流都等于電阻R中的電流,即I=U/R=2V/4Ω=0.5A。電動機兩端的實加電壓等于總電壓(電源電壓)減去電阻R兩端的電壓,即U=U-U=6V-2V=4V。則電動機的功率為:P=UI=4V×0.5A=2W。
本文為全文原貌 未安裝PDF瀏覽器用戶請先下載安裝 原版全文
上述分析說明,電阻R所在的這部分電路與電動機所在的這部分電路有著本質的不同。從能量轉化的角度看:電阻R所在的這部分電路是將電能全部轉化為熱能;而電動機所在的這部分電路電能只有少部分轉化為熱能,大部分轉化為機械能。前者屬于純電阻電路,后者屬于非純電阻電路。
歐姆定律只適用于純電阻電路,即用電器工作的時候電能全部轉化為內能的電路。例如電熨斗、電暖氣、電熱毯、電飯鍋、熱得快等。而電動機、電風扇,等等,除了發熱外,還對外做功,所以這些是非純電阻電路,歐姆定律不再適用。由歐姆定律導出的公式也只適用于純電阻電路(如:W=IRt W=U/Rt Q=UIt Q=U/Rt P=IR P=U/R等。)
2.歐姆定律適用于金屬導體和通常狀態下的電解質溶液;但是對于氣態導體(如日光燈管中的汞蒸氣)和其它一些導電元器件,歐姆定律不成立。歐姆定律對某一導體是否適用,關鍵是看該導體的電阻是否為常數。當導體的電阻是不隨電壓、電流變化的常數時,其電阻叫線性電阻或歐姆電阻,歐姆定律對它成立;當導體的電阻隨電壓、電流變化時,其電阻叫非線性電阻,如:電子管、晶體管、熱敏電阻等,歐姆定律對它不成立。
3.歐姆定律只有在等溫條件下,即導體溫度保持恒定時才能成立。當導體溫度變化時,歐姆定律對該導體不成立,因為電阻是溫度的函數。
在講解歐姆定律的應用時,常舉白熾燈的例子,實際上白熾燈的鎢絲在溫度變化很大時電阻具有非線性,隨著電流的增大,鎢絲的溫度升高很多,其電阻也隨著變化。對非線性電阻,歐姆定律不成立,但是作為電阻定義的關系式R=U/I仍然成立,只不過對非線性電阻,R不再是常量。
綜上所述,例1中第一空電路中的電流有兩個值0.5A和4A,一個是在純電阻電路(電阻R)中用歐姆定律算出的電流0.5A。另一個是用歐姆定律計算在非純電阻電路(含電動機的電路)中的電流為4A,顯然不對。
通過對例1的全面、透徹的分析,我們對電學知識得到了進一步升華:(1)判斷電路的連接方式;(2)判斷電表的作用;(3)利用歐姆定律解決實際問題時必須注意“三性”;(4)復習了電功率、焦耳定律等相關電學公式;(5)歐姆定律的適用范圍。
學生能夠領悟到,復習不是為了解題,而是要掌握知識的前后聯系,優化知識結構;仔細觀察,認真分析;發散思維,以點帶面;舉一反三,融會貫通。這樣,從而體現出知識與技能、過程與方法,以及情感態度和價值觀的培養。
參考文獻:
[1]王較過.物理教學論.陜西師范大學出版社,2003.
[2]閻金鐸,田世坤.初中物理教學通論.高等教育出版社,1989.
[3]梁紹榮等.普通物理學―電磁學高等教育出版社,1988.
關鍵詞:是對物理規律的一種表達形式。通過大量的觀察、實驗歸納而成的結論。反映物理現象在一定條件下發生變化過程的必然關系。物理定律的教學應注意:首先要明確、掌握有關物理概念,再通過實驗歸納出結論,或在實驗的基礎上進行邏輯推理(如牛頓第一定律)。有些物理量的定義式與定律的表式相同,就必須加以區別(如電阻的定義式與歐姆定律的表式可具有同一形式R=U/I),且要弄清相關的物理定律之間的關系,還要明確定律的適用條件和范圍。
(1)牛頓第一定律采用邊講、邊討論、邊實驗的教法,回顧“運動和力”的歷史。消除學生對力的作用效果的錯誤認識;培養學生科學研究的一種方法——理想實驗加外推法。教學時應明確:牛頓第一定律所描述的是一種理想化的狀態,不能簡單地按字面意義用實驗直接加以驗證。但大量客觀事實證實了它的正確性。第一定律確定了力的涵義,引入了慣性的概念,是研究整個力學的出發點,不能把它當作第二定律的特例;慣性質量不是狀態量,也不是過程量,更不是一種力。慣性是物體的屬性,不因物體的運動狀態和運動過程而改變。在應用牛頓第一定律解決實際問題時,應使學生理解和使用常用的措詞:“物體因慣性要保持原來的運動狀態,所以……”。教師還應該明確,牛頓第一定律相對于慣性系才成立。地球不是精確的慣性系,但當我們在一段較短的時間內研究力學問題時,常常可以把地球看成近似程度相當好的慣性系。
(2)牛頓第二定律在第一定律的基礎上,從物體在外力作用下,它的加速度跟外力與本身的質量存在什么關系引入課題。然后用控制變量的實驗方法歸納出物體在單個力作用下的牛頓第二定律。再用推理分析法把結論推廣為一般的表達:物體的加速度跟所受外力的合力成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。教學時還應請注意:公式F=Kma中,比例系數K不是在任何情況下都等于1;a隨F改變存在著瞬時關系;牛頓第二定律與第一定律、第三定律的關系,以及與運動學、動量、功和能等知識的聯系。教師應明確牛頓定律的適用范圍。
(3)萬有引力定律教學時應注意:①要充分利用牛頓總結萬有引力定律的過程,卡文迪許測定萬有引力恒量的實驗,海王星、冥王星的發現等物理學史料,對學生進行科學方法的教育。②要強調萬有引力跟質點間的距離的平方成反比(平方反比定律),減少學生在解題中漏平方的錯誤。③明確是萬有引力基本的、簡單的表式,只適用于計算質點的萬有引力。萬有引力定律是自然界最普遍的定律之一。但在天文研究上,也發現了它的局限性。
(4)機械能守恒定律這個定律一般不用實驗總結出來,因為實驗誤差太大。實驗可作為驗證。一般是根據功能原理,在外力和非保守內力都不作功或所作的總功為零的條件下推導出來。高中教材是用實例總結出來再加以推廣。若不同形式的機械能之間不發生相互轉化,就沒有守恒問題。機械能守恒定律表式中各項都是狀態量,用它來解決問題時,就可以不涉及狀態變化的復雜過程(過程量被消去),使問題大大地簡化。要特別注意定律的適用條件(只有系統內部的重力和彈力做功)。這個定律不適用的問題,可以利用動能定理或功能原理解決。
二、牛頓第二定律。在第一定律的基礎上,從物體在外力作用下,它的加速度跟外力與本身的質量存在什么關系引入課題。然后用控制變量的實驗方法歸納出物體在單個力作用下的牛頓第二定律。再用推理分析法把結論推廣為一般的表達:物體的加速度跟所受外力的合力成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。教學時還應注意公式F=Kma中,比例系數K不是在任何情況下都等于1;a隨F改變存在著瞬時關系;牛頓第二定律與第一定律、第三定律的關系,以及與運動學、動量、功和能等知識的聯系。教師應明確牛頓定律的適用范圍。
三、萬有引力定律。教學時應注意:①要充分利用牛頓總結萬有引力定律的過程,卡文迪許測定萬有引力常量的實驗,海王星、冥王星的發現等物理學史料,對學生進行科學方法的教育。②要強調萬有引力跟質點間的距離的平方成反比(平方反比定律),減少學生在解題中漏平方的錯誤。③明確是萬有引力基本的、簡單的表式,只適用于計算質點的萬有引力。萬有引力定律是自然界最普遍的定律之一。但在天文研究上,也發現了它的局限性。
四、機械能守恒定律。這個定律一般不用實驗總結出來,因為實驗誤差太大。實驗可作為驗證。一般是根據功能原理,在外力和非保守內力都不做功或所做的總功為零的條件下推導出來。高中教材是用實例總結出來再加以推廣。若不同形式的機械能之間不發生相互轉化,就沒有守恒問題。機械能守恒定律表式中各項都是狀態量,用它來解決問題時,就可以不涉及狀態變化的復雜過程(過程量被消去),使問題大大地簡化。要特別注意定律的適用條件(只有系統內部的重力和彈力做功)。這個定律不適用的問題,可以利用動能定理或功能原理解決。
五、動量守恒定律。歷史上,牛頓第二定律是以F=dP/dt的形式提出來的。所以有人認為動量守恒定律不能從牛頓運動定律推導出來,主張從實驗直接總結。但是實驗要用到氣墊導軌和閃光照相,就目前中學的實驗條件來說,多數難以做到。即使做得到,要在課堂里準確完成實驗并總結出規律也非易事。故一般教材還是從牛頓運動定律導出,再安排一節“動量和牛頓運動定律”。這樣既符合教學規律,也不違反科學規律。中學階段有關動量的問題,相互作用的物體的所有動量都在一條直線上,所以可以用代數式替代矢量式。學生在解題時最容易發生符號的錯誤,應該使他們明確,在同一個式子中必須規定統一的正方向。動量守恒定律反映的是物體相互作用過程的狀態變化,表式中各項是過程始、末的動量。用它來解決問題可以使問題大大地簡化。若物體不發生相互作用,就沒有守恒問題。在解決實際問題時,如果質點系內部的相互作用力遠比它們所受的外力大,就可略去外力的作用而用動量守恒定律來處理。動量守恒定律是自然界最重要、最普遍的規律之一。無論是宏觀系統或微觀粒子的相互作用,系統中有多少物體在相互作用,相互作用的形式如何,只要系統不受外力的作用(或某一方向上不受外力的作用),動量守恒定律都是適用的。
中圖分類號:O413.1 文獻標識碼:A 文章編號:1672-3791(2016)08(a)-0143-02
量子力學于20世紀早期建立以來,經過飛速的發展,逐漸成為現代物理學科中不可分割的一部分。量子力學是現代量子理論的核心,它的發展不僅關乎人類的物質文明,還使人們對量子世界的認識有了革命性的進展[1]。
但是,量子力學并不是一個完備的理論,其體系中還存在許多問題,特別是微觀與宏觀,即經典理論與量子力學的聯系。為解決這些迷惑,歷史上相關科學家提出了很多實驗與理論。該文旨在以量子力學發展史上提出的幾個實驗為例,對其進行簡單分析,以展示經典理論與量子力學的聯系。
1 問題的提出
1935年3月,愛因斯坦等人在EPR論文中提出了“量子糾纏態”的概念,所謂的“量子糾纏態”是以兩個及以上粒子為對象的。在某種意義上,“量子糾纏態”可以理解為是把迭加態應用于兩個及以上的粒子。若存在兩個處于“量子糾纏態”的粒子,那這兩個粒子一定是相互關聯的,用量子力學的知識去理解,只要人們不去探測,那么每個粒子的狀態都不能夠確定。但是,假如同時使這兩個粒子保持某一時刻的狀態不變,也就是說,使兩個粒子的迭加態在一瞬間坍縮,粒子1這時會保持一個狀態不再發生變化,根據守恒定律,粒子2將會處于一個與粒子1狀態相對應的狀態。如果二者相距非常遙遠,又不存在超距作用的話,是不可能在一瞬間實現兩個粒子的相互通信的。但超距作用與當今很多理論是相悖的,于是,這里就形成了佯謬,即“EPR佯謬”。
同年,薛定諤提出了一個實驗,后人稱之為“薛定諤的貓”。設想把一只貓關在盒子里,盒中有一個不受貓直接干擾的裝置,這套裝置是由其中的原子衰變進行觸發,若原子衰變,裝置會被觸發,貓會立即死去。于是,量子力學中的原子核衰變間接決定了經典理論中貓的生死。由量子力學可知,原子核應該處于一種迭加態,這種迭加態是由“衰變”和“不衰變”兩個狀態形成的,那么貓應該也是處在一種迭加態,這種迭加態應該是由“死”與“生”兩個狀態形成的,貓的生死不再是一個客觀存在,而是依賴于觀察者的觀測。顯然,這與常理是相悖的[2]。
這兩個佯謬的根源是相同的,都是經典理論與量子理論之間的關系。
2 近代研究進展
2.1 驗證量子糾纏的存在
華裔物理學家Yanhua Shih[3]曾做過一個被稱為“幽靈成像”的實驗,其實驗過程及現象大致可以描述為:假設存在一個糾纏光源,這個光源可以發出兩種互為糾纏的光子,通過偏振器使兩種光子相互分離,令第一束光子通過一個狹縫,第二束不處理,然后觀察兩束光的投影,結果發現第二束光的投影形狀與第一束光通過的狹縫形狀完全相同。
人們發現,如果僅僅使用經典理論,實驗現象是無法解釋的,必須應用量子理論,才能解釋“幽靈成像”的現象。這個實驗也恰好驗證了“量子糾纏”現象的存在。
2.2 量子世界中的歐姆定律
歐姆定律是由德國物理學家Ohm于19世紀早期提出來的,它是一種基于觀察材料的電學傳輸性質得到的經驗定律,其內容是:在同一電路中,導體中的電流跟導體兩端所加的電壓成正比,跟導體自身電阻成反比,即 (U指導體兩端電壓;R指導體電阻;I指通過導體的電流)。
18世紀二、三十年代,人們認為經典方法在宏觀領域是正確的,但是在微觀領域將會被打破。Landauer公式給出了納米線電阻的計算方法,即(h為普朗克常量;e為電子電量;N為橫波模式數量);而在宏觀中,(為材料的密度;l為樣品的長度;s為樣品的橫截面積)。由此發現,在宏觀領域,樣品的電阻是隨著樣品的長度增加而增加的,而在微觀領域,樣品的電阻與樣品的長度沒有關系。
Weber[4]等人制備了原子尺度的納米線并進行觀察,實驗發現,在微觀領域,歐姆定律也是滿足的。Ferry[5]認為樣品的電阻是由多種機理所導致的,而他最后得到的結果正是由于多種機理的相互疊加。經過分析,他認為歐姆定律何時開始生效取決于納米線中電子耗散的力度,力度越大說明開始生效時的尺度越小。但這也同時引發了另一個問題的思考:低溫條件下,歐姆定律是仍然成立的,也就是說經典理論仍然成立,但往往是希望在低溫下研究比較純粹的量子效應。低溫條件下歐姆定律的成立要求在進行實驗研究時,必須花費更多的精力來使得經典理論與量子理論分離開。
2.3 生活中的量子力學――光合作用與量子力學
Scholes等[6]從兩種不同的海藻中提取出了一種名為捕光色素復合體的化學物質,并在其正常的生活條件下,通過二維電子光譜術對其作用機理進行了分析研究。他們首先使用了飛秒激光脈沖模擬太陽光來激發這些蛋白,發現了會長時間存在的量子狀態。也就是說,這些蛋白吸收的光能能夠在同一時刻存在于不同地點,而這實際上是一種量子迭加態。由此可見,量子力學與光合作用是有很大聯系的。
3 結語
從近幾年來量子力學的基本問題和相關的實驗研究可以看出,雖然經典理論與量子理論的聯系仍然是一個懸而未決的問題,但是當代科學家已經能夠通過各種精妙的實驗逐步解決歷史遺留的一個個謎團,使得微觀領域的單個量子的測量與控制成為可能,并且積極研究宏觀現象的微觀本質,將生活與量子力學逐漸的聯系起來。對于“經典理論與量子力學的聯系”這一專題還需要進行不斷研究,使量子力學得到進一步完善與發展。
參考文獻
[1] 孫昌璞.量子力學若干基本問題研究的新進展[J].物理,2001,30(5):310-316.
[2] 孫昌璞.經典與量子邊界上的“薛定諤貓”[J].科學,2001(3):2,7-11.
[3] Shih Y. The Physics of Ghost Imaging[J].2008.
〔中圖分類號〕 G633.7
〔文獻標識碼〕 C
〔文章編號〕 1004—0463(2013)
06—0039—02
“三個焦點”是指在課堂教學中的三個主要因素,即重點、難點、關鍵點。下面筆者就以初中物理課堂教學為例來談談這“三個焦點”及相互關系和處理方法。
一、課堂教學中的“三個焦點”
1.重點。教學重點即課堂教學中的知識重點,是最基本、最重要也是學生應該掌握的教學內容,是一節課中要解決的主要矛盾。抓住了教學重點,就抓住了課堂教學中的關鍵。
2.難點。教學難點指學生在學習知識過程中難以理解和掌握的內容,是在完成“重點”教學任務或對教學內容進行提升和發展、延伸與拓展,以及理解、分析和解決問題時難以逾越的思維障礙。
3.關鍵點。教學關鍵點指解決好重點、難點的關鍵措施,它往往是學生的易錯點、易混點、易忽略點。
例如,《密度》一節教學的重點是:(1)通過實驗探究,學會用比值的方法定義密度的概念。(2)理解密度的概念、公式。(3)用密度知識解決簡單的實際問題。難點是:在實驗探究的基礎上利用“比值”定義密度的概念。關鍵點是:做好實驗探究,用“比值”建立密度的概念。
二、“三個焦點”之間的關系
教學重點、難點和關鍵點之間既相互獨立又相互關聯。任何學科的教學內容都有一定的知識結構,是一張相互聯系的網。重點是這張網上的“綱”,難點是這張網上的“結”,關鍵點是理“綱”解“結”的方法措施。三者關系有全部重疊、部分重疊、非重疊三種。全部重疊時只要抓住關鍵點,重點、難點也就解決了;部分重疊時,抓住關鍵點就意味著突出重點或排除難點;非重疊時要精心設計和安排關鍵點去解決重點和難點。難點解決不好會影響整個課堂的教學效果,如果只注重教學難點,而未能較好地抓住教學重點和關鍵點,不但難點難以突破,而且教學任務也難以完成。關鍵點是突破重點、攻克難點的突破口,抓住關鍵點,才能更好地掌握重點和突破難點。
三、教學過程中如何處理好“三個焦點”
1.備好課。備好課是上好課的前提和保證,在備課過程中應注意以下幾點:
(1)找準重點。備課時必須依據教學大綱的要求,認真研究教材或參閱有關資料,正確分析教材的重點,考慮好在教學中如何突出重點。例如,歐姆定律是反映電學中三個重要的物理量,是電流、電壓、電阻關系的一個重要定律,是進一步學習電學知識和分析電路的基礎,因此通過實驗探究得出歐姆定律,掌握和理解歐姆定律的內容和公式,并用歐姆定律進行分析和解決簡單的電路問題是教學的重點。
(2)找到難點。要找到難點,就要聯系學生的實際情況,根據他們的知識基礎和思維能力,分析和找到學生難于理解的地方,即內容比較抽象、深奧、復雜或學生接受起來比較困難的知識和技能,并且為在課堂上解決這個難點,可以提供適當的措施和方法。例如,歐姆定律教學的難點是設計實驗過程和對歐姆定律的理解,其中學生對實驗方法的掌握是重點也是難點。
(3)找出關鍵點。教學關鍵點突出反映了學生在新知識學習過程中認識上的矛盾性,體現了已學知識與新知識的聯系,展示了教學過程中由感知教材向理解教材的合理過渡。因此,確定與處理教學關鍵點,對于順利學習新知識起決定性的作用。 要確定與處理好關鍵點,就要深入鉆研教材,弄清教材內容的內在聯系。要對教材的內容作深入剖析,理出知識的層次,找出已學知識和后續知識與這些內容的聯系,找出解決重點及難點的關鍵所在。例如,歐姆定律教學的關鍵點是:通過對實驗數據的分析,概括出電流與電壓、電流與電阻的關系。
2.上好課。上好課是提高教學質量的關鍵和保證,因此要做到以下幾點:
(1)突出重點。教授重點是一節課的中心任務,課堂中的所有教學活動都必須緊緊圍繞教學重點進行,在教學結束時應及時歸納總結,以突出重點。例如,牛頓第一定律中“一切物體在沒有受到外力作用時總保持靜止狀態或勻速直線運動狀態”是教學的重點,教學時應著重講解。
物理規律是物理學知識體系的核心構件,物理規律教學也是中學物理教學成功的關鍵環節。
1.物理規律是物理學知識體系的核心
物理學的知識體系是以一系列的物理規律凝聚而成的。在物理學發展史上,人們正是以一系列的物理規律為中心而建立了物理學的各個分支體系。例如光的反射定律和折射定律是光學知識的中心,歐姆定律、串并聯電路的規律和焦耳定律是電學知識的中心等等。
2.使學生掌握物理規律是物理知識教學的中心任務
學習和研究自然科學,中心任務是掌握自然規律并用來為人類服務。物理學是自然科學中的一門重要學科,學習物理知識的中心任務應該是掌握物理規律并應用于實際。
在物理教學中,要使學生建立概念和掌握規律之間存在著不可分割的、辯證的聯系。一方面,形成清晰、準確的概念是掌握規律的基礎,如果概念模糊不清,就談不上準確地掌握規律;另一方面,掌握了物理規律又可以深刻而全面地理解概念。例如,只有理解力的三要素概念(大小、方向、作用點),才能理解同一直線上或互成角度的二力合成的規律(如圖1)和二力平衡條件(如2)等;反之,通過掌握力的合成規律和二力平衡條件,又能更深刻地理解力的三要素概念。所以,物理規律的應用比物理概念的應用更為廣泛,理解和掌握物理規律才能更有效地利用物理知識去解決實際問題。由此可見,使學生掌握好物理規律是物理知識教學的中心任務。
二、物理規律的特點及其分類
1.物理規律的特點
物理規律反映了在一定條件下某些物理量之間內在的必然聯系,它是客觀存在的,不以人的主觀意志而轉移。它具有以下特點:
(1)物理規律只能發現,不能創生。
任何客觀規律都只是被發現,而不能被“創生”,但不同學科的規律被認識與發現的途徑又是不盡相同的。物理學規律揭示的是物質的結構和物質運動所遵循的規律,因此必然與人們認識物理世界的途徑有關,即都與觀察、實驗、抽象、思維、數學推理等有著密不可分的聯系。
(2)物理規律反映了有關物理概念之間的必然聯系。
任何一個物理規律,都是由一些概念組成的,這些概念常常表現為物理量,可以用一些數字和測量聯系起來,物理規律則把概念之間的一定關系用語言邏輯或數學邏輯表達出來。
例如,歐姆定律是由導體、電流(I)、電壓(U)、電阻(R)等概念組成的,研究對象是導體,電流(I)、電壓(U)、電阻(R)是3個可測量的物理量。它表明了通過研究對象(導體)的電流與研究對象(導體)的電阻(R是反映研究對象本身的量)和加在研究對象(導體)兩端的電壓(U)之間的定量關系。
2.物理規律的分類
在大千世界里,物理現象千姿百態,物理運動各有不同的形式,有宏觀的、微觀的,有機械運動現象、熱現象、光現象、電磁現象等,所以物理規律就有多種多樣,物理規律也就有不同的表述形式。中學物理規律主要包括以下類型:
(1)物理定律
一般是直接從觀察實驗的結果中概括總結出來的物理規律,如牛頓運動定律、能量轉化與守恒定律、歐姆定律、光的反射定律、焦耳定律等。
(2)定理、原理
定律和原理一般是從已知的物理規律或理論出發,對某特定事物或現象進行演繹、推理,從而得出在一定范圍內有關物理量之間的函數關系或新的論斷,并經得起實踐檢驗的物理規律。
如阿基米德原理(F浮=G排=ρ液gV)、功的原理等。
(3)方程、公式
這是利用數學式子來描述物理量之間關系的物理規律。
如串聯和并聯電阻的計算公式:R=R1+R2+…+Rn;
1/R=1/R1+1/R2+…+1/Rn。
(4)法則、定則
即利用特定方法表示的物理規律,如矢量合成的平行四邊形法則、右手定則和左手定則等。
(5)其他
如力(包括二力、共點力)的平衡條件、串聯電路的分壓規律、并聯電路的分流規律、平面鏡和透鏡成像規律、晶體融化和凝固規律、液體壓強規律等。
三、物理規律教學的一般過程
人類在研究和探索物理規律的過程中逐步形成了物理學研究的基本方法。學生認識物理規律的過程也相當于一個探索與研究的過程,因此,物理規律的教學方法與物理學的研究方法大體上是一致的。
1.提出問題,創設便于發現規律的物理環境
作為新授課的物理規律的教學,首先要按照導入新課的方法,以提出問題的形式導入學習物理規律的課題。教師要有意識地提供一個便于探索規律、發現規律的物理環境。創設物理環境常用的方法有實驗法和舉例法。
(1)實驗法
教師借助于演示實驗或學生實驗,使物理現象或過程展示出來,讓學生觀察。例如講授牛頓第一定律時所做的小車分別通過毛巾、棉布、木板表面所滑動距離大小的實驗(圖3)。
(2)舉例法
即列舉出學生在日常生活中熟悉的、能引導發現規律的物理現象。例如,講授影響蒸發快慢的因素時,舉出以下例子:“同樣濕的衣服,晾在樹蔭下干得慢”;“同樣多的水,倒在碟子里干得快,裝在瓶子里干得慢”。
2.探索物理事實的內在聯系,形成規律
這一教學過程主要是把第一步驟所擺出來的物理事實進行抽象思維,探討物理規律現象的內在聯系,提供建立規律的科學依據。根據不同的物理規律,可以采用下列具體方法:
(1)實驗歸納法
例如,用一般水做實驗得到“浮力等于物體所排開的水重”,再改用煤油或酒精做實驗也得到了同樣的結果,而且把物體全部浸入水中或部分浸入水中做實驗都得到了同樣的結論,最后歸納得到了阿基米德原理。
(2)單因子實驗法
對于多因子的物理過程,可運用單因子實驗,先分別固定幾個物理量而研究其中兩個量之間的關系,最后綜合為一個完整的物理規律。例如,研究電流與電壓、電阻之間的關系,可以先保持電阻不變而改變電壓,觀察分析電流隨電壓的改變情況,得到電流與電壓之間的關系;再保持電壓不變而改變電阻,觀察分析電流隨電阻的改變情況,得到電流與電阻之間的關系。最后綜合成為一條物理規律,即歐姆定律。
(3)先定性后定量推演法
限于中學實驗條件,精確測定數據有困難,有些定量的實驗不易成功,因此,可以在觀察定性實驗現象的基礎上進行定量推演或分析介紹,最后形成規律。例如焦耳定律,實驗時觀察通電后煤油溫度的高低來定性說明電流產生熱量的多少。實驗表明,電阻越大,電流強度越大,通電時間越長,電流產生的熱量越多。然后介紹科學家焦耳的研究成果,進而得出定量描述,形成焦耳定律:電流通過導體產生的熱量跟電流強度的平方成正比,跟導體的電阻成正比,跟通電時間成正比,Q=I2Rt。
3.下定論并對規律進行討論,加深理解規律
經過第二步的探討和思維加工,初步形成規律后,要整理成文,用科學而又簡明的語言文字或數學工具來表述物理規律。
(1)規律的物理意義
解釋規律的內容,說明它表示什么樣的物理含義,必要時還要與相近規律進行比較。用數學公式或圖像表述規律的,在教學中要引導學生討論如何根據規律的內容得出公式或圖像;反之,又如何從公式或圖像來理解其物理意義。例如焦耳定律,其內容是電流通過導體時產生的熱量與電流強度的平方、導體的電阻、通電時間有關,這個關系是正比關系,由此得到焦耳定律的數學表達式為Q=I2Rt。
(2)規律表述中的關鍵詞語和公式中各字母的意義
例如,阿基米德原理的公式F浮=G排=ρ液gV,公式中字母F浮代表物體所受的浮力,G排表示排開液體的重力,ρ液是液體的密度,g是重力加速度,V表示排開液體的體積。這個公式中各字母代表的物理意義,學生必須十分清楚,運用過程中才不至于出現差錯。
(3)公式中各物理量的單位
中學階段,物理單位的教學也不容忽視。
例如公式Q=I2Rt,式中I、R、t的單位分別是安培、歐姆、秒,Q的單位必須是焦耳。
物理規律的公式中各物理量的單位都是確定的,不能隨便亂用。
(4)規律的成立條件和適用范圍
物理規律本身是反映在一定條件下物理事物內在的必然聯系,并且物理規律是在一定條件下和一定范圍內總結出來的,因此,也只能在這個條件下、這個范圍內才成立。學生學習物理規律時,往往只知道死背條文而忽視了成立條件和適用范圍,在實際應用中亂套,在遇到情況變化時就難以下手,所以,在教學中要重視講清規律的成立條件和適用范圍。
在一般物理規律的表述中,前語是成立條件或適用范圍,后語是結果,即因果關系基本連結成一個完整的句子。通過分析規律的語句結構,從字里行間就可以知道規律的成立條件和適用范圍。例如牛頓第一定律,它的適用范圍是“一切物體”,條件是“沒有受到外力作用”(原因),結果是“保持靜止或勻速直線運動狀態”。
有些規律在敘述中只提出成立條件,必要時可以補充說明適用范圍。例如阿基米德原理,要指出也適用于氣體。有些規律限于學生的基礎和認識水平,只強調成立條件,而暫不提適用范圍。例如,歐姆定律、焦耳定律,不提及只適用于純電阻電路。
四、學生學習物理規律中的常見問題
為了有效地引導學生學好物理規律,我們還必須研究和認清學生學習物理規律中的常見問題和心理障礙。在中學階段,主要存在以下幾個方面的問題:
1.感性知識不足
中學物理規律的教學,許多是從事實出發經過分析歸納總結出來的。中學生抽象思維能力不強,他們理解物理規律特別需要有充分的感性材料作基礎。如果沒有足夠的、能夠把有關的現象與現象之間的聯系鮮明地展示出來的實驗或學生日常生活中所熟悉的曾親身感受過的事例作基礎,勢必造成學生學習上的困難。
例如,研究電磁感應和自感的有關規律,如果沒有足夠的、能夠逐步揭示現象間本質聯系的實驗作基礎,學生對這些規律就很難理解。
2.學生在日常生活中形成的錯誤觀念的干擾
學生在日常生活中積累了一定的生活經驗,對一些問題形成了某些觀念。這些觀念中,有的比較正確,但往往有一定的表面性和片面性,甚至是錯誤的觀念。這些先入為主的錯誤觀念對學生正確理解物理規律往往起著嚴重的干擾作用。如:學生在運動和力的關系上往往有“物體受力才能運動,不受外力,物體根本不會運動”的觀念,這就給學生正確理解運動和力的關系帶來了很大的困難。
3.抽象邏輯思維能力不強
在物理規律的研究和運用中,有時要進行嚴格的邏輯推理和科學的想象等抽象思維活動;在運用物理規律解決某些問題時,要想取得正確而全面的解答,學生要具有較高水平的思維品質。然而,中學生在心理發展上正處在思維發展過渡期,對于不同年級的學生和不同的學生個體,這個發展在遲早快慢上有差異,有些學生由于沒有形成邏輯思維的習慣,抽象思維能力不強,這就使他們在學習和運用物理規律時遇到了較大的困難。
4.不會運用物理規律說明、解釋現象和分析解決實際問題
中學階段,學生在理解物理規律上,經過努力并不會感到很困難,但是運用起來常常會束手無策。形成的原因,除了知識上的欠缺和思維習慣、思維定勢的干擾等因素外,最主要的是學生還未掌握運用物理知識去分析、處理、解決問題的思路和方法,因此,學生在完成認識的第二個“飛躍”上困難較大。
物理規律的教學要有階段性,要有一個逐步深化、提高的過程。對于同一物理規律,初中、高中有不同層次的要求,因此,我們應遵循學生的認知規律,由淺入深,一步步地通過一系列的教學活動,來提高物理規律的教學水平。
參考文獻
[1]閻金鋒 田世昆 中學物理教學概論[M]。
一、聯系生活實踐,多動手腦,培養興趣
讓物理融入生活,是物理教學的初衷;從生活走向物理,則是物理教學的途徑。電學知識與我們的生活聯系非常緊密。為什么燈泡用久了會發黑?為什么燈泡絲要做成螺旋狀?電飯煲是如何煮飯的?探究起來,妙趣無窮。
因此,鼓勵學生聯系生活實際,是學以致用的需要,是物理知識化難為簡的需要,更是激發學生學習興趣的需要。“興趣是最好的老師”,有了興趣就有了成功的動力。
在實驗課上,我們可以設置與生活息息相關、讓學生感興趣的實驗幫助學生理解相關電學知識。例如,在課后習題中有一個興趣實驗“自制水果電池”,學生可以進行分組探究,每個小組都可以向實驗室借一只電壓表和一些導線,每個小組成員都自備不同種類的水果和蔬菜。通過實驗去探究水果電池的正負極,水果電池的電壓的影響因素等。最后讓各個小組展示他們的研究成果。這不僅滿足了學生的求知欲,還最大限度地激發了學生的學習興趣。
其實,四驅車、自制電鈴、簡易電話……學生完全可以利用所學的電學知識自己設計完成。教師應當鼓勵學生在保證安全的前提下自己動腦動手進行這些小制作,并給予學生適當展示成果的機會,呵護學生“破壞和創造”的熱情。這樣既培養了學生的動手操作能力,又提高了學生的設計實驗的水平,讓學生在實驗中體驗了成功的快樂。
二、打好基礎,發展學生思維
學好電學知識要抽絲剝繭,抓住重點,即應牢固掌握基本概念、基本定理和主要公式。
1.明確每個符號的物理意義,能掌握電學的基本規律。電學基礎知識包括“五概念四規律”,即電流、電壓、電阻、電功、電功率;歐姆定律、焦耳定律、串聯電路的特點、并聯電路的特點。對于以上重點概念,能讓學生知道為什么引入它們,如何定義,單位是什么(對物理量),有什么重要應用等;對于規律,應著重理解它們反映的是哪些物理量、有什么樣的關系或變化規律、這些規律的成立條件和適用范圍是什么。學習時,要分清主次、突出重點,以重點帶動一般,切勿平均使用力量。
2.能掌握公式的使用條件,對公式進行正確變形,并能熟記和應用。理解這些規律可以,例如,數學中a=c/b說明a與b成反比,a與c成正比,但在物理ρ=m/V定義式中,ρ與m、V的大小無關;在I=U/R中,卻有I與U成正比,I與R成反比等,這就要求學生對物理的基本概念理解深刻。
又例如,在學習“電路連接的基本方式”后,利用串聯電路只有一條電流路徑的特點及開關與用電器一般串聯的知識,向學生提出這樣一個問題:一個電路中有一個電源,一個開關S,兩個燈泡L1和L2,且這兩個燈泡串聯,當開關S斷開時,L1、L2均發亮,但S閉合后,L1不發光,L2發光,這種情況是否存在?若存在畫出可能的電路圖。由于已有知識的干擾,將學生置于“矛盾”之中。學生只有敢于想象,沖出開關只能與用電器串聯的定勢,才能解決這個問題,既加深了知識的理解,又鍛煉了思維的深刻性和廣闊性。
三、重視畫圖和識圖
學習物理離不開圖形。復雜電路設計,都是主要依靠“圖形語言”來表述的,圖像能夠變抽象思維為形象思維,更精確地掌握物理過程,有了圖就能作狀態分析和動態分析。
例如,在計算有關電路的習題時,已給出的電路圖往往很難分析出電路的連接方式,而電路連接的方式不清楚,就無法正確選用串、并聯電路的規律。如果能熟練地將所給出的電路圖畫成等效電路圖,就會很容易地看出電路的連接特點,使有關問題迎刃而解。
對于這部分內容的學習,教師應當明確歐姆定律應用于某一電阻還是整個電路,教會學生根據現成的圖形學會識圖、繪圖。教師對于學生電路圖的學習,一定要有耐心,畢竟學生開始接觸電學,不可能一下就能掌握和識別電路圖。尤其是開始接觸電路圖,一定要每個圖都幫助學生分析到位,這里寧可慢一點,也要為學生打下扎實的基礎,有了識別電路圖的本領,學習歐姆定律及計算,難度會相應減小許多。
四、引導學生做好實驗
實驗教學,還應注意把所學的物理知識與日常生活、生產中的現象結合起來,其中也包含與物理實驗現象的結合,因為大量的物理規律是在實驗的基礎上總結出來的。在認真完成課內規定實驗教學的基礎上,還可以布置一些學生自己設計的實驗。
例如,可以設計在缺少電流表或缺少電壓表的條件下測量未知電阻的實驗。這些都需要同學們自己獨立思考、探索,不斷提高自己的觀察、判斷、發散思維等能力,使自己對物理知識的理解更深刻。
五、引導學生做好綜合應用題
電學知識頭緒多,綜合性強,做綜合應用題時,學生往往感到無從下手,稍有疏忽就會造成錯誤。在教學中,教師應在以下兩個方面起引導作用。
第一方面,學生在解題過程中由于物理知識理解不透,常會出現生搬硬套的現象,這時,教師要找準癥結給予指點。
例如,在學過“電功率知識”后,學生討論“220 V,40 W”和“220 V,100 W”兩盞燈串聯在電路中,哪個更亮?大多數學生會認為:100 W的燈泡比40 W的燈泡更亮,這說明學生被燈泡的額定功率所迷惑,而忽視了燈泡的明暗程度與燈泡的實際功率有關。找到癥結后,教師讓學生思考“220 V,40 W”和“220 V,100 W”的兩個燈泡,哪個電阻大?將它們串聯起來,通過它們的電流大小怎樣?最后引導學生利用公式“P=I■R”來判斷哪個燈泡會更亮。
1 在知識的形成過程中,領略分類法的魅力
分類法并不直接由物理知識、內容所表達,而是往往隱藏在知識之中,并支配著知識的獲取及應用,因此在物理教學過程中,教師應充分挖掘教材中的方法論因素,讓學生領會方法的內涵,領略方法的魅力.
例如,蘇科版八下教材第九章力與運動,教材在探究力與運動的關系這一復雜問題時,分三個小問題加以討論:(1)物體在平衡力作用下怎樣運動?(2)物體在不受力作用下怎樣運動?(3)物體在非平衡力作用下怎樣運動?通過一系列實驗觀察,數據積累,進行整理和歸納,總結得出:(1)物體受力平衡時,將保持靜止或勻速直線運動狀態(即運動狀態不改變);(2)物體在沒有受到力作用時,總保持靜止或勻速直線運動狀態,即牛頓第一定律;(3)物體在非平衡力作用下運動狀態發生改變,可以概括得出結論:力是使物體運動狀態改變的原因,力不是使物體運動的
原因.
再如,蘇科版九上教材14.4滑動變阻器,如圖1所示,在讓學生了解其機構、各部分的名稱和銘牌上各參數的意義的基礎上,為了探究其正確的接法,先讓學生思考討論如下問題:
(1)滑動變阻器共有A、B、C、D四個接線柱,如果只選其中的兩個接入電路,可能有哪幾種接法?
(2)如果將滑動變阻器A、D兩個接線柱接入電路,向左移動滑片,滑動變阻器接入電路的電阻將怎樣改變?電路中的電流將怎樣改變?
學生討論后得出:滑動變阻器任意兩個接線柱接入電路可能有六種接法①A、D;②A、C;③B、D;④B、C;⑤A、B;⑥C、D.
接下來,學生設計實驗、進行實驗后得出:滑動變阻器能改變接入電路的電阻只有四種:①A、D;② A、C;③B、D;④B、C.進一步分析實驗現象得出:①A、D與②A、C等效;③B、D與④B、C等效,最終概括為;滑動變阻器接線柱的正確接法是“一上一下”.
其實,教材中在很多地方都滲透著分類法的思想,這不僅體現人們對分類法思想的重視,讓學生體驗到分類法伴隨在知識的形成過程中,更重要的是分類法思想能鍛煉學生邏輯思維的條理性和嚴密性,增強邏輯思維的能力,提高分析問題和解決問題的能力.
2 在解題過程中,體驗分類法的應用
2.1 對物體運動狀態的分類討論
一般情況下,由于所研究的問題中,運動物體所處的狀態未知而使問題在求解過程中顯得復雜,因此盡可能對物體所處運動的狀態進行充分考慮,然后進行分類討論.
例1 將一物塊輕輕放入盛滿水的溢水杯,物塊靜止后,溢出81 g的水;再將其輕輕放入盛滿酒精的溢水杯中,有72 g的酒精溢出,則該物塊的密度為
多少?
解析 此題屬于浮力中較難的題目.首先根據阿基米德原理F浮=m排g, 可得 F浮水∶F浮酒=9∶8,求浮力不難,但難度在于確定物塊靜止時在液體中所處的狀態,而此物塊的狀態具有不確定性,需分類討論.可能有四種情形:
(1)物塊在水、酒精中均漂浮;
(2)物塊在水、酒精中均沉底(都浸沒在其中);
(3)物塊在水中沉底,在酒精中漂浮;
(4)物塊在酒精中沉底,在水中漂浮.
現將上述情形逐一分析:
(1)假設情形1成立,根據漂浮條件,受到的浮力等于自身重力,且物塊的質量不變、重力不變,所以,物塊在水中和酒精中受到的浮力相等,即
F浮水∶F浮酒=1∶1≠9∶8,與題意不符,所以假設情形1不正確.
(2)假設情形2成立,則物體浸沒在水中和酒精中,物體排開液體的體積和自身的體積相等,
即V排=V物;又根據阿基米德原理F浮水=ρ水gV物,F浮酒=ρ酒gV物,得浮力比為F浮水∶F浮酒=5∶4≠9∶8,與題意不符,所以假設情形2也不正確.
(3)假設情形3成立,則違背物體的浮沉條件:漂浮ρ液>ρ物,沉底ρ物>ρ液,所以假設情形3不正確.
(4)因水的密度大于酒精的密度,
所以,由(1)(2)(3)可知,只能是物體在水中漂浮,在酒精中沉底(浸沒),
根據漂浮條件,物體受到水的浮力F浮水=
ρ物Vg;
根據阿基米德原理,在酒精中受到的浮力F浮酒=ρ酒gV,所以,
F浮水F浮酒=ρ物Vgρ酒Vg=98
解得:ρ物=ρ酒=98×0.8g/cm3=0.9 g/cm3.
2.2 對物質的物理屬性分類討論
有些物理問題,由于物質本身屬性變化,會使問題的結果出現多種可能,因此在解決此類問題時,需要對物理屬性的多種可能進行分類討論,才有利于問題的解決.
例2 現有A、B、C三個輕質小球,已知:A帶正電,A和B相互排斥,B和C相互吸引,C和A相互吸引,則C帶電情況的是
A.一定帶正電 B.一定帶負電
C.可能不帶電 D.無法確定
解析 該題主要涉及A、B、C三小球中任意兩球電荷間相互作用的關系.由于A帶正電,B、C兩球的電性未知,可能有多種變化,因而需對B、C兩球的電性進行分類討論,具體如下:
B球的電性可能有三種:
(1)若B不帶電,則A、B相互吸引,
(2)若B帶負電,則A、B相互吸引,
(3)若B帶正電,則A、B相互排斥,
根據題意,可確定:B帶正電.
接下來,判定C的電性,參照上述方法分析:
(1)若C帶正電,則B、C相互排斥,
(2)若C帶負電,則B、C相互吸引,
(3)若C不帶電,則B、C相互吸引.
對照已知條件,C可能不帶電、也可能帶負電,故答案為:C.
2.3 對已知條件分類討論
在某些物理問題中,由于已知條件不夠明確,此時出現需要對已知條件的多種可能進行分類討論,才能對問題進行求解.
例3 已知電源電壓為6 V不變,現有兩個定值電阻R1、R2接入電路中,串聯在其中的電流表示數為0.25 A;若R1、R2換另一種方式接入電路中,電流表示數變為1 A,求R1、R2的阻值分別為多少?
解析 該題主要考查串、并聯電路中電流、電壓的特點和歐姆定律.解答此類題首先需要確定兩個電阻的連接方式,但在已知條件中并沒有明確表示,致使R1、R2的連接方式有幾種可能:
(1)若R1、R2并聯,則根據并聯電路中電流、電壓的特點和歐姆定律,可得
I=UR1+UR2
(2)若R1、R2串聯,則根據串聯電路中電阻的特點和歐姆定律,可得
I′=UR1+R2
比較上述兩式,可得:I>I′,
由此可得 6VR1+R2=0.25A
焦耳定律:電流做功時,消耗的是電能。究竟電能會轉化為哪種形式的能,要看電路中具有哪種類型的元件。
只含白熾燈、電爐等電熱元件的電路是純電阻電路。電流通過純電阻電路做功時,電能全部轉化為導體的內能。電流在這段電路中做的功W就等于這段電路發出的熱量Q,即
Q=W=IUt
由歐姆定律 U=IR
代入上式后可得熱量Q的表達式
Q=I2Rt (4)
如此引入,Q=W=IUt,U=IR兩式成立均需要條件:純電阻電路。學生很容易順理成章地認為焦耳定律的表達式Q=I2Rt,也是只適用于純電阻電路。雖然課本中對此表達式做了一些解釋:
在推導(4)式的過程中,我們用到了“Q=W”這個條件,它要求電流做的功“全部變成了熱”,也就是電能全部轉化為導體的內能。因此,(4)式中的“P”專指發熱的功率。
但仍不能讓初學者明顯地看出此式適用于任何電路。學生很容易去想既然Q=W=IUt,U=IR兩式成立均需要純電阻電路,那么對于非純電阻電路,為什么熱量的表達式仍然是Q=I2Rt?如何推導?教學中雖再三強調,和學生一起分析教材,學生還是很難正確理解。
一、認識物理
物理知識的學習過程是學生對人類實踐經驗的認識過程,認識包括兩個過程:感性與理性,
1 感性認識,“一切感性認識都是人的感官對外界事物的直接感知,它與外界事物之間沒有中間環節,對外事物的反映是表面的、具體的。”
在學習“光學”時,教師直接說出光路是怎樣的,并讓學生死記,學起來吃力,如果教學中創設真實的光路情境,那學生不用老師教,自己也能畫出光路圖,學習“簡單電路”,讓學生背誦電路是由什么組成的,不如就直接給出一個完整的實物電路,讓學生們自己去認識,他們不僅很快知道了元件的名稱,還能對照實物畫出電路圖,教學的直觀性原則也很好地說明了感性認識的重要性“引導學生形成所學事物、過程的清晰表象,豐富他們的感性知識從而使他們能夠正確理解書本知識和發展認識能力,”
2 理性認識,感性認識是認識的開始,理論認識是認識的目標,“理性認識是人們通過抽象思維得到的對事物本質、內在聯系和規律性的認識,”我們在教學物理過程中,應該盡可能地為學生提供充足的感性材料,“在表象、概念的基礎上進行分析、綜合、判斷、推理”,獲得理性認識,其中,歸納、演繹、類比等思維方法是初中常用的。
教學“歐姆定律”時,學生通過多次實驗得到的多組U、I數據,運用歸納法得出:電阻一定時,電流與電壓成正比,同時,也能進一步理解:電阻不隨電壓或電流的變化而變化,教學“液體內部壓強”,通過固體壓強公式,結合密度公式,演繹出液體壓強公式,而在“微觀粒子”中,我們利用類比宏觀世界的方法學起來就顯方便、快捷與準確,聲與光、電與磁,諸多方面可以通過類比。
3 感性認識往往具有片面性,有時學生會得到與教學內容相反的認識,為了避免這樣的事情發生,教師應有意地控制學生地認識發展過程,控制認識的發生與發展的方法并不唯一,但要遵循兩個原則:一是提供的感性材料具有鮮明的共性,二是提供的感性材料與學生的生活息息相關。
二、聯系實際
只有將理論與生活實際聯系到一起,理論才更易被理解。“認識的能動作用,不但表現于從感性的認識到理性的認識之能動的飛躍,更重要的還須表現于從理性的認識到革命的實踐這一個飛躍。”
學習“杠桿原理”時,讓學生體會省力與費力、以及最小的力;學習“歐姆定律”時,讓學生通過已知電壓與電阻,判斷一下電流的大小;學習了右手螺旋定則,學生判斷通電螺線管周圍磁場方向,這些都是可以用實踐去體會所學,驗證自己掌握的理性材料。
“認識在回到實踐的過程中,正確的被證實,錯誤的被糾正,不完備的被充實”,物理規律往往有它的適用范圍,因為規律者是有條件成立的,就像物理測量工具,往往都不能超出其量程,如,歐姆定律只適合于純電阻電路。
三、解決書面問題