時間:2023-09-06 17:20:15
導言:作為寫作愛好者,不可錯過為您精心挑選的10篇高層建筑抗震設計論文,它們將為您的寫作提供全新的視角,我們衷心期待您的閱讀,并希望這些內容能為您提供靈感和參考。
自從1886年世界上第一棟近代高層建筑——美國芝加哥家庭保險公司大樓(HomeIuranceBuilding,10層,高55m)建成以來,至今已有100多年的歷史了。高層建筑不僅在材料和結構體系上逐漸多樣化,而且在高度上也有大幅度增長。而一次又一次地震災難及教訓,警示人們:防震減災任重道遠,刻不容緩。
從上個世紀開始,各國的專家、學者對抗震設計進行了一系列研究。進入90年代,結構抗震分析和設計已提到各國建筑設計的歷史日程。特別是我國處于地震多發區(地震基本烈度6度及其以上的地震區面積約占全國面積的60%),高層抗震設計設防更是工程設計面臨的迫切的任務。作為工程抗震設計的依據,高層建筑抗震分析更處于非常重要的地位。
二、材料的選用和結構體系問題在地震多發區,采用何種建筑材料或結構體系較為合理應該得到人們的重視。
我國高層建筑中常采用的結構體系有:框架、框架-剪力墻、剪力墻和筒體等幾種體系,這也是其他國家高層建筑采用的主要體系。但國外,特別地震區,是以剛結構為主,而在我國鋼筋混凝土結構幾混合結構卻占了90%.如此高的鋼筋混凝土結構及混合結構,國內外都還沒有經受較大的考驗。鋼結構同混凝土結構相比,具有優越的強度、韌性和延性,強度重量比,總體上看抗震性能好,抗震能力強。
震害調查表明,鋼結構較少出現倒塌破壞情況。在高層建筑中采用框架-核心筒體系,因其比鋼結構的用鋼量少,又可減少柱子斷面,故常被業主所看中。混合結構的鋼筋混凝土內往往要承受80%以上的震層剪力,有的高達90%以上。由于結構以鋼筋混凝土結構的位移值為基準。但因其彎曲變形的側移較大,靠剛度很小的鋼框架協同工作減小側移,不僅增加了鋼結構的負擔,而且效果不大,有時不得不加大混凝土筒的剛度或設置伸臂結構,形成加強層才能滿足規范側移限值;
此外,在結構體系或柱距變化時,需要設置結構轉換層。加強層和轉換層都在本層形成剛度而導致結構剛度突變,常常會使與加強層或轉換層相鄰的柱構件剪力突然加大,加強層伸臂構件或轉換層構件與外框架柱連接處很難實現強柱弱梁。因此在需要設置加強層及轉換層時,要慎重選擇其結構模式,盡量減小其本身剛度,減小其不利影響。
唐山鋼鐵廠震害調查資料統計參數結構形式總建筑面積(萬㎡)倒塌和嚴重破壞比例(%)中等破壞比例(%)鋼結構3.6709.3鋼筋混凝土結構4.0623.247.9砌體結構3.0941.220.9在高層建筑中,應注意結構體系及材料的優選。現在我國鋼材產量已居世界前列,建筑鋼材的類型及品種也在逐漸增多,鋼結構的加工制造能力已有了很大提高,因此在有條件的地方,建議盡可能采用型鋼混凝土結構(SRC)、鋼管混凝土結構(CFS)或鋼結構(S或),以減小柱斷面尺寸,并改善結構的抗震性能。
在超過一定高度后,由于鋼結構質量較輕而且較柔,為減小風振而需要采用混凝土材料,鋼骨(鋼管)混凝土,通常作為首選。工程經驗表明:利用鋼管混凝土承重柱自重可減輕65%左右,由于柱截面減小而相應增加使用面積,鋼材消耗指標與鋼筋混凝土結構相近,而工程造價和鋼筋混凝土結構相比可降低15%左右,工程施工工期縮短1/2.此外鋼管混凝土結構顯示出良好的延性和韌性。
1)建筑結構的平面布置。建筑結構的平面布置是影響結構抗震的重要因素,合理的建筑平面布置對建筑結構設計是至關重要的。大量地震災害表明,平面布置簡單、對稱規則、質量和剛度分布比較均勻并且具有明確傳力途徑的建筑結構在地震時不容易發生破壞。規則結構能較為準確地預估結構的作用效應和地震時的反應,較容易采取有效的抗震措施及相應的結構措施來加強其抗震性能。相反,平面布置復雜、不對稱且不規則的結構,其地震作用效應很難估計的。因此,高層建筑結構中規范規定,宜采用規則結構,不應采用嚴重不規則的結構。
2)建筑結構的體系選擇。高層建筑結構設計中,就優先采用具有多道防線的結構體系。例如:框架—剪力墻結構、剪力墻結構和筒體結構。這三種結構可以作為地震區高層建筑的首選體系。當建筑物高度不高且層數不多時,可采用框架結構。但當建筑物位于地震區,且高度均較高時,應避免采用框架結構、板柱剪力墻結構。因為,地震具有強破性且持續時間很長,往復次數較多,能夠對建筑物造成累積破壞。單一的結構體系在遭遇地震時,一旦發生破壞,很容易造成房屋倒塌,危及人們的生命及財產的安全。當結構體系具有多道防線時,當遭遇地震時,第一道防線遭破壞后,后續的防線仍然能抵抗地震的沖擊力,可以最低限度的防止建筑物的倒塌,給人們以充分的時間進行逃生,保證人民的生命安全。因此,高層建筑結構抗震設計中的多道防線是進行抗震設計時所必須設置的。
3)結構薄弱層。當建筑結構的側向剛度分布不均勻、豎向抗側力構件不連續和樓層承載力突變時,容易產生薄弱層。薄弱層在地震中是最先遭受破壞的部位。因此,對有明顯薄弱層的結構,應采用相應的抗震構造措施來提高其抗震能力。結構構件的實際承載能力是判斷薄弱層部位的基礎,有意識、有目的地控制薄弱層部位,讓它有足夠的變形能力,而且不使薄弱層發生轉移是提高結構抗震性能的重要手段。
2高層建筑抗震設計常見問題
1)高層建筑結構的地基問題。高層建筑結構在設計階段,應有完善的巖土工程勘察報告,為結構工程提供基本的設計依據。建筑結構場地應選擇在有較穩定的基巖、開闊、平坦、土層堅硬或較密實的有利地段,不應建造在容易發生滑坡、地陷、崩塌和泥石流等不利地段及抗震的危險地段,有利地段的建造對建筑物的抗震是十分有利的。有時由于建設單位工期要求,在確定方案后設計人員就直接進入了施工圖設計階段,從而忽略了巖土工程勘察資料和場地的選擇,從而給后續工作帶來不必要的麻煩。
2)高層建筑結構平面布置問題。高層建筑為了追求外立面效果的美觀而設計成平面不規則、不對稱且有較大凹進或較大開洞的結構,這種結構對抗震十分不利。因此,在建筑方案正式確定前,結構工程師就應對建筑平面布置、體型方面的內容提出自己的見解,及時和建筑師進行溝通,盡量選用平面、豎向規則對稱、質量和剛度、承載力均勻的平面布置,這對抗震十分有利。
3)高層建筑結構的高度問題。如今的高層建筑結構的高度越來越高,甚至出現了很多超高層的高層建筑,這就對結構工程師的專業知識提出了更高的要求。不同的高度對應不同的結構體系,規范上有明確規定。一旦結構超過了規范規定的限制高度,就應通過專門的審查、論證進行更嚴格的計算分析和研究。
4)高層建筑抗震設防等級的選取問題。抗震等級是結構抗震設計的重要依據,抗震等級選取不當將給建筑物的安全帶來許多隱患,對工程造價也會帶來不必要的浪費。抗震等級根據房屋的場地類別、抗震設防烈度、建筑高度、結構類型等因素綜合評定。每個結構工程師應當熟練掌握結構的抗震概念設計和規范知識,做到該提高的應當提高其抗震等級,該降低則應適當降低。
5)計算軟件的合理應用。高層建筑結構抗震設計時,應該應用正規的結構設計軟件進行設計,軟件中的各個參數指標能夠正確反映建筑物的特征。結構工程師能正確分析結構軟件所計算的結果,并做出正確的判斷。但有時計算機設計會給結構工程師帶來一種錯覺,有的結構工程師往往過分依賴計算結果,而減少了結構的概念學習。一旦選擇了錯誤的計算參數,就會導致結構設計出現問題,對結構的安全和經濟方面造成影響。因此,結構工程師應加強自身的業務學習和抗震概念設計的理解,做到熟練掌握相關的結構概念設計,并且根據自身的專業知識配合計算結果選擇最佳的結構設計方案。
防震設計是高層建筑結構設計必不可少的一部分,并且地震是一種無法消除的自然災害。因此,高層建筑結構設計人員應采取科學、合理的措施來降低地震對高層建筑物的危害系數,以提高高層建筑物的穩定性,從而保證人們的生命和財產安全,這同時也是我國高層建筑物結構設計工藝不斷優化的必然結果。
1高層建筑結構設計中抗震概念概述
地震的發生是無規律的,因此做好高層建筑物的防震設計是十分必要的。實踐證明,只有利用科學、合理的設計措施,整體布局高層建筑的結構細節,才能降低地震對于高層建筑物的危害。一般抗震設計是從抗震值和抗震措施兩個方面進行的,其過程是:地震情況統計、數據分析、提出概念。抗震概念設計的主要內容就是保證高層建筑整體的穩固性和細節結構的抗震性。簡單地說,抗震概念設計就是基于工程抗震的基本理論和實際的抗震經驗總結出的工程抗震概念,是決定建筑物抗震能力的基礎。抗震概念設計中包含空間作用、非線性性質、材料時效、阻尼變化等多種不確定的因素。抗震概念設計的原則是建筑結構設計簡單性、剛度適宜性、勻稱性、整體性。例如在一些地震頻發的地區設計高層建筑時,應該考慮都高層建筑上下部分結構性質不同的問題。
2高層建筑架構設計中抗震概念設計的應用策略
2.1合理的場地
高層建筑物的建設地點也是保障建筑工程施工質量的關鍵因素。選擇合理的建筑施工場地,不僅可以減少企業的投入成本,還能提高建筑物的穩固性。因此,施工人員可以利用現代先進科技設施來選擇理想的地段。場地的選擇應當避開地震危險地段,如地震時會發生崩塌、地裂以及在高強度地震下容易發生地表錯位的場地。一般地震危險地段包括斷層區、坡度陡峭的山區、存在液化和夾層的坡地以及大面積采空的地區。如發生嚴重地震的四川北川地區,其區域特點是縣境內地形切割強烈,地形起伏大,相對高差超過1000m,溝谷谷坡一般大于25°,部分達40°~50°,甚至陡立。并且地貌類型以侵蝕構造山地、侵蝕溶蝕山地為主。另外在縣境內還存在一條斷裂帶。這也就是北川地區成為汶川地震重災區的原因,該地區的地震宏觀烈度達到了Ⅺ度。因此,建設高層建筑的重點就是選擇地勢開闊、平坦以及中硬場地土。如我國中部平原地區,其地勢平坦,并且屬于地震低發區。當然,如果無法避免區域限制,那么也可以選擇抗震性比較好的地區,如避免存在孤立山包的區域以及表面覆蓋層厚度較小的區域。總之,因地制宜,選擇合適的高層建筑建筑建設場地是保證高層建筑物穩定性的最佳途徑。
2.2合理布局建筑平面
建筑物的房屋布置和結構布置都是影響高層建筑物穩定性的重要因素。依據抗震的概念,合理布局能夠有效提高高層建筑物的抗震能力,延長建筑的使用年限。一般施工人員都會根據地震系數選擇適當的建筑物高度和寬度,使高層建筑的抗震能力達到最大值。建筑平面的布置可以從四個方面考慮:一是布置平面時,應當遵循簡單、對稱的結構特點,以減少偏心;二是應當保證質量和剛度變化均勻,避免樓層錯層問題;三是盡量設計合理的平面長度,且建筑物突出的長度也應該符合相關標準;四是盡量避免采用角部重疊的平面圖形以及細腰形平面圖形。如早前發生在墨西哥的地震,相關人員在地震發生后對房屋的結構進行了分析。據數據表明,建筑物剛度明顯不對稱會增加15%的地震破壞率,拐角形建筑會增加42%的地震破壞率,因此,高層建筑施工人員應該科學合理的設置建筑平面。此外,現澆鋼筋混凝土高層建筑適用高度的確定需要考慮地區的地震烈度,如高層建筑的抗震墻在烈度系數達到6的地區,其最高適宜高度為130米;在烈度系數為7的地區,最高適宜高度為120米。總之,合理的高層建筑物平面布局是保證高層建筑抗震能力的關鍵。
2.3合理的結構設計
高層建筑的結構設計不僅要滿足抗震要求,還要滿足經濟、功能齊全、施工技術等要求。在設計高層建筑結構時要考慮實際的場地環境和建筑物本身的建設標準。另外,結構的設計還應該滿足對稱性。總之,對于高層建筑的結構設計應該從各個方面綜合考慮。首先,高層建筑結構的設計需要考慮多種影響因素,除材料、施工、地基、防烈度等因素外,還要考慮經濟因素,之后才能確定建筑物結構類型。有利于防震的建筑平面設計包括方形、圓形、矩形、正六邊形、正八邊形等,不利于防震的建筑平面設計包括多塔形、錯層、樓板開口等。次外,如果建設的高層建筑屬于純框架高層建筑,那么設計人員應避免出現框架柱傾斜、樓體傾斜等問題。因為如果框架柱傾斜,一旦發生地震就會出現剪切破壞問題,造成高層建筑的嚴重損壞。其次,更為重要的是結構設計一定要遵循對稱原則,避免扭轉問題的出現。如果高層建筑結構采取對稱的結構,那么當發生地震時,其建筑物只會發生平移震動,建筑物各個部分的受力比較均勻,從而降低地震對高層建筑的破壞程度。
2.4設置多條防震線
設置防震線是為了提高高層建筑結構的抗震系數,提高建筑物體的穩固性。之所以設置多條防震線是因為建筑物中各個部分的結構和功能是不相同的,設計相應的反震線能整體提高高層建筑物的抗震能力。設置多條防震線的優勢在于如果發生地震時,第一道防線的抗側力構件在遭到破壞之后,其地震的沖擊力和破壞力就會減弱。這樣當地震經過多道防震線之后,地震的破壞力就會降到最低。如尼加拉瓜的馬拉瓜市的美洲銀行大廈,就是應用多道防震線的典型建筑,其大樓采用的是11.6米*11.6米的鋼筋混凝土芯筒作為主要的抗震和防風構件,并且該芯筒又由四個小芯筒組成。相關數據顯示,該高層建筑對于地震的反應用數據表示是,當發生地震時,其四個小芯筒的結構底部地震剪力值達到了27000KN,結構底部地震傾覆力矩達到了370000KN•m,其結構頂點位移值為120毫米。總而言之,設置多條防震線提高高層建筑物防震能力的重要手段。尤其是在社會經濟快速發展的背景下,重視抗震概念的設計是延長高層建筑物使用年限,提高我國建筑工藝水平的關鍵。
3總結
綜上所述,隨著我國經濟水平的不斷增長,高層建筑物的數量也在迅速增長。因此,做好高層建筑結構設計中的抗震概念設計就凸顯的尤為重要。將抗震概念設計應用到高層建筑結構設計中,不僅要考慮高層建筑結構施工的各個方面,還要考慮各種外界因素以及抗震標準。這樣才能提高高層建筑的穩定性,降低地震給高層建筑造成的危害程度,從而保證人們生命和財產的安全。
作者:周寶學 單位:浙江華坤建筑設計院有限公司
參考文獻:
[1]張念華.抗震概念設計在高層建筑結構設計中的應用[J].中國新技術新產品,2014,04∶78-79.
2008年的汶川地震和2010年的玉樹地震對中國來說無不是沉重的打擊,不但造成巨大的經濟損失,更心痛的是有那么的生命離開了我們,這不得不讓人們反思我們建筑的抗震設防能力。在地震中,幾乎所有的建筑都倒塌了,相對于低層建筑而言,高層建筑破壞和倒塌的后果就更加嚴重。近年來國內國外高層、超高層建筑的高度不斷攀升,就在2010年正式開放的哈利法塔的高度達到了驚人的828米,而且建筑的體型越來越復雜,不規則結構越來越多,這對于結構的抗震都是十分不利的。為保證高層結構的抗震安全,達到安全和經濟的統一,有必要對高層結構的抗震設計、抗震結構和抗震技術進行探討。
1.地震導致建筑破壞的原因
根據地震經驗,地震期間導致高層建筑破壞的直接原因可分為以下三種情況:
(1)地震引起的山崩、滑坡、地陷、地面裂縫或錯位等地面變形,對其上部建筑的直接危害;
(2)地震引起的砂土液化、軟土震陷等地基失效,對上面建筑物所造成的破壞;
(3)建筑物在地面運動激發下產生劇烈震動過程中,因結構強度不足、過大變形、連接破壞、構件失穩或整體傾覆而破壞;
2.建筑的抗震概念設計
所謂“建筑抗震概念設計”是指根據地震災害和工程經驗等所形成的基本設計原則和設計思想,依此進行建筑和結構總體布置并確定細部構造的過程。科技論文。
3.建筑抗震設計方法的發展過程
3.1、靜力理論階段
水平靜力抗震理論始創于意大利,發展于日本,1900年日本學者大森房吉提出“震度法”的概念。該理論認為:結構物所收到的地震作用,可以簡化為作用于結構的等效水平靜力,其大小等于結構重力荷載乘以一個系數。
3.2、反應譜理論階段
我國及國際上多數國家抗震設計規范本質上都采用了反應譜理論及結構能力設計原則。其主要特點如下:
(1) 用規范規定的設計反應譜進行結構線彈性分析。
(2) 結構構件的承載力是根據設計反應譜所作的結構線彈性計算通過荷載和地震作用效應組合后內力進行設計。
(3) 在早期方案設計階段,結構體系、結構體型的規則性及結構的整體性滿足規范的規定,以使結構能可靠地發揮非彈性延性變形能力。
3.3、動力理論階段
1971年美國圣費南多地震的震害,使人們清楚地認識到“反應譜理論只說出了問題的一大半,而地震持時對結構破壞程度的重要影響沒有得到考慮”,從而推動了采用地震加速度過程a(t)來計算結構反應過程的動力法的研究。此一新理論不但考慮了地震的持時,還更近一步地考慮了地震過程中反應譜所不能概括的其他特性。
4.高層建筑結構體系
設計地震區的高層建筑,在確定結構體系時,除了要考慮前面所提到的材料用量、建筑內部空間和使用的房屋高度等因素外,還需進一步考慮下列抗震設計準則:
(1)具有明確的計算簡圖和合理的地震力傳遞路線;
(2)具備多道抗震防線,不會因部分結構或構件失效而導致整個體系喪失抵抗側力或承受重力荷載的能力
(3)具有必要的承載力、良好的延性和較多的耗能潛力,從而使結構體系遭遇地震時有足夠的防倒塌潛力;
(4)沿水平和豎向,結構的剛度和強度分布均勻,或按需要合理分布,避免出現局部削弱或突變形成薄弱環節,從而防止地震時出現過大的應力集中或塑性變形集中。
在確定建筑方案的同時,應綜合考慮房屋的重要性、設防烈度、場地條件、房屋高度、地基基礎以及材料供應和施工條件,并結合體系的經濟、技術指標,選擇最合適的結構體系。
5.建筑抗震措施或設計
5.1、錯開地震動卓越周期
一個場地的地面運動,一般均存在著一個破壞性最強的主振周期,如果建筑物的自振周期與這個卓越周期相等或相近,建筑物的破壞程度就會因共振而加重。地震動卓越周期又稱地震動主導周期。
從眾多的地震倒塌建筑物中可以看出,建筑周期與地震動卓越周期相接近,是引起建筑共振破壞的主要因素和直接原因。因此,在進行高層建筑設計時,首先要估計地震引起該建筑所在場地的地震動卓越周期;然后,在進行建筑方案設計時,通過改變房屋層數和結構類型,盡量加大建筑物基本周期與地震動卓越周期的差距。
5.2、采取基礎隔震措施
傳統的抗震方法是依靠結構的承載力和變形能力,來耗散地震能量,使結構免于倒塌,但由于是一種“被動防震”,就不免存在許多不足之處。地震對建筑的破壞作用,是由于地面運動激發起建筑的強烈振動所造成的,也就是說,破壞能量來自地面,通過基礎向上部結構傳遞。人們總結地震經驗后發現,地震時結構底部的有限滑動,能大幅度地減輕上部結構的破壞程度。科技論文。
基于可動概念的基礎隔震方案很多,主要有:(1)軟墊式隔震。在房屋底部設置若干個帶鉛芯的鋼板橡膠隔振裝置,使整個房屋坐落在軟墊層上,遭遇地震時,樓房底面與地面之間產生相對水平位移,房屋自振周期加長,主要變形都發生在軟墊塊處,上部結構層間側移變得很小,從而保護結構免遭破壞。(2)滑移式隔震。在房屋基礎底面處設置鋼珠、鋼球、石墨、砂粒等材料形成的滑移層或滾動層,使建筑物遇地震時在該處發生較大位移的滑動,達到隔震目的。(3)擺動式隔震。科技論文。擺動式隔震方式實質上是柔性底層概念的改進和引伸。(4)懸吊式隔震。這一隔震方式的構思是,將整個建筑懸吊在支架下面,避免地震的直接沖擊,從而大幅度較小建筑物所受到的地震慣力。
5.3、削減地震反應——提高結構阻尼
為了提高結構阻尼,可以在結構上設置阻尼器,以吸收地震輸入的能量,減小結構變形。臺北101大樓在87~92樓安裝了一個巨大的鋼球風阻尼器,是世界上目前最大的大樓風阻尼器,它的球體直徑5.5米,由四十一層12.5厘米厚鋼板結合為球形,重量660噸,可以有效減輕由于颶風和地震所引起的震動和側移。
為高層建筑提供附加阻尼的另一新途徑,是利用主體結構與剛性掛板之間特殊裝置的非彈性性能和摩擦。采取這一措施后,可以使阻尼比僅為2%的抗彎鋼框架,有效粘滯阻尼比增加到8%或更多,從而使底部地震剪力和頂點側移降低50%。
此外,通過采用高延性構件和附設耗能裝置也能有效削減地震反應。
6.高層建筑抗震技術發展展望
未來高層建筑的發展趨勢,體型將更趨復雜,結構體系將更趨多樣化。出于對建筑藝術上的要求,高層建筑的體型將會更為復雜和多樣,許多高層建筑都是綜合性的和多用途的,因此對建筑和結構必然提出新的更高的要求。從結構體系上看,也決不會停留在原有的幾種形式上,而會更好地滿足功能和藝術上的需求,創造出新的結構體系。
參考文獻
[1]劉大海,楊翠如,鐘錫根.高層建筑抗震設計.中國建筑工業出版社.
[2]谷連營,肖國梁.高層建筑抗震技術的發展概況.山西建筑,2006.8(15):50—51.
建筑設計是否考慮抗震要求,從總體上起著直接的控制主導作用。結構設計很難對建筑設計有較大的修改,建筑設計定了,結構設計原則上只能是服從于建筑設計的要求。如果建筑師能在建筑方案、初步設計階段中較好地考慮抗震的要求,則結構工程師就可以對結構構件系統進行合理的布置,建筑結構的質量和剛度分布以及相應產生的地震作用和結構受力與變形比較均勻協調,使建筑結構的抗震性能和抗震承載力得到較大的改善和提高;如果建筑師提供的建筑設計沒有很好地考慮抗震要求,那就會給結構的抗震設計帶來較多困難,使結構的抗震布置和設計受到建筑布置的限制,甚至造成設計的不合理。有時為了提高結構構件的抗震承載力,不得不增大構件的截面或配筋用量,造成不必要的投資浪費。由此可見,建筑
設計是否考慮抗震要求,對整個建筑起著很重要的作用。因此,我們在建筑抗震設計過程別要注重以下幾個問題。
一、建筑體型設計問題
建筑體型包括建筑的平面形狀和主體的空間形狀的設計。震害表明,許多平面形狀復雜,如平面上的外凸和凹進、側翼的過多伸懸、不對稱的側翼布置等在地震中都遭到了不同程度的破壞。唐山地震就有不少這樣的震例。平面形狀簡單規則的建筑在地震中未出現較重的破壞,有的甚至保持完好無損。沿高度立體空間形狀上的復雜和不規則在地震時都會造成震害。特別是在建筑結構剛度發生突變的部位更易產生破壞。因此在建筑體型的設計中,應盡可能地使平面和空間的形狀簡潔、規則;在平面形狀上,矩形、圓形、扇形、方形等對抗震來說都是較好的體型。盡可能少做外凸和內凹的體型,盡可能少做不對稱的側翼和過長的伸翼。在體型布置上盡可能使建筑結構的質量和剛度比較均勻地分布,避免產生因體型不對稱導致質量與剛度不對稱的扭轉反應。
二、建筑平面布置設計問題
建筑物的平面布置在建筑設計中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距離、內墻的布置、空間活動面積的大小、通道和樓梯的位置、電梯井的布置、房間的數量和布置等,都要在建筑的平面布置圖上明確下來。而且,由于建筑使用功能不同,每個樓層的布置有可能差異很大,建筑平面上的墻體,包括填充墻、內隔墻、有相應強度和剛度的非承重內隔墻等等布置不對稱,墻體與柱子分布的不對稱、不協調,使建筑物在地震時產生扭轉地震作用,對抗震很不利。有的建筑物,其剛度很大的電梯井筒被布置在建筑平面的角部或是平面的一側,結果在地震中造成靠電梯一側建筑物的嚴重破壞。這是因為電梯井筒具有極大的抗側力剛度,吸引了地震作用的主要部分[3]。有的建筑物,在平面布置上一側的墻體很多,而另一側的墻體稀少,這就造成平面上剛度分布的很不對稱,質量分布也偏心,使結構的受力和變形不協調,導致扭轉地震作用效應,帶來局部墻面的破壞。有的建筑物,如底層為商場的臨街建筑,臨街一側往往不設墻體,而其另一側則有剛度很大的墻體封閉,兩側在剛度上相差很多,也將在地震時引起扭轉地震作用,對抗震不利。還有的建筑平面布置上,經常出現內隔墻不對齊或中斷,使剛度發生突變和地震力傳遞受阻,對抗震也帶來不利,客易引起結構的局部破壞。建筑平面布置設計對建筑抗震關系很大,從概念上要解決的一個核心問題是:建筑平面布置設計上要盡可能做到使結構的質量和剛度分布均勻,對稱協調,避免突變,防止產生扭轉效應。在建筑平面布置的總體設計上要盡可能為結構抗側力構件的合理布置創造條件,使建筑使用功能要求與建筑結構抗震要求融合成一體,充分發揮建筑設計在建筑抗震中的作用。
三、建筑豎向布置設計問題
建筑的豎向布置設計問題在建筑設計中主要反映在建筑沿高度(樓層)結構的質量和剛度分布設計上。無論是單層或多層,還是高層建筑或超高建筑,這個問題是比較突出的。存在的這個主要問題是,由于建筑使用功能的不同要求,如底層或下面幾層是商場、購物中心,建筑上要求是大柱距、大空間;而上面的樓層則是開間較大的寫字樓或布置多樣化的公寓樓,低層設柱、墻很少,而上面則是以墻為主,柱很少。有的建筑在布置上還設有面積很大的公用天井大廳,在不同樓層上設有大會議廳、展廳、報告廳等,建筑使用功能的不同,形成了建筑物沿高度分布的質量和剛度的嚴重不均勻、不協調。突出的問題是沿上下相鄰樓層的質量和剛度相差過大,形成突變[3]。在剛度最差的樓層形成對抗震極為不利的抗震承載力不足和變形很大的薄弱層。這是在建筑設計中必須高度重視的問題。在實際設計中,在建筑使用功能不同的情況下,很可能出現上下相鄰樓層的墻體不對齊,柱子不對齊,墻體不連續,不到底;上層墻多,下層墻少;上層有柱,下層無柱等,使地震力的傳遞受阻或不通;抗震用的剪力墻設置不能直通到底層、剪力墻布置嚴重不對稱或數量太少。所有這些布置都將給建筑物帶來地震作用分布的不均勻、不對稱和對建筑物很不利的扭轉作用。多次大震害表明,建筑物豎向樓層剛度的過大變化,給建筑物造成很多破壞,甚至是整個樓層的倒塌。在1995年的日本阪神大地震中,有多棟鋼筋混凝土高層建筑發生了中間樓層的整體坐落倒塌破壞。因此,盡可能使剪力墻布置比較均勻并使其能沿豎向貫通到建筑物底部,不宜中斷或不到底。盡量避免其某樓層剛度過少,盡量避免產生地震時的鈕轉效應。
四、建筑上應滿足的設計限值控制問題
根據大量震害的經驗總結,現行《建筑抗震設計規范》(GBJll-89)對房屋建筑在建筑設計中應考慮的一些抗震要求的限值控制提出了規定。這些規定,建筑設計應予遵守:一是房屋的建筑總高度和層數;二是對房屋抗震橫墻問題和局部墻體尺寸的限值控制。
五、屋頂建筑的抗震設計問題
在高層和超高層建筑設計中,屋頂建筑是一個重要的設計部分。從近幾年對一些高層建筑抗震設計審查結果來看,屋頂建筑存在的主要問題,一是過高,二是過重。這樣的屋頂建筑加大了變形,也加大了地震作用。對屋頂建筑自身和其下的建筑物的抗震都不利。屋頂建筑的重心與下部建筑的重心不在一條線上,且前者的抗側力墻與其下樓層的抗側力墻體上下不連續時,更會帶來地震的扭轉作用,對建筑物抗震更不利。為此,在屋頂建筑設計中,宜盡量降低其高度。采用高強輕質的建筑材料和剛度分布比較均勻、地震作用沿結構的傳遞比較通暢,使屋頂重心與其下部建筑物的重心盡可能一致;當屋頂建筑較高時,要使其具有較好的抗震定性,使屋頂建筑的地震作用及其變形較小,而且不發生扭轉地震作用。
六、結束語
總的來說,建筑設計是建筑杭震設計的一個重要方面,建筑設計與建筑
抗震設計有著密切關系。它對建筑抗震起著重要的基礎作用。一個優良的建筑抗震設計,必須是在建筑設計與結構設計相互配合協作共同考慮抗震的設計基礎上完成。為此,要充分重視建筑設計在建筑抗震設計中的重要性,在建筑抗震設計中更好地發揮建筑設計應有的作用。
參考文獻:
[1]《建筑抗震設計規范》(CBJll-89),中國建筑工業出版社,2005。
建筑設計是否考慮抗震要求,從總體上起著直接的控制主導作用。結構設計很難對建筑設計有較大的修改,建筑設計定了,結構設計原則上只能是服從于建筑設計的要求。如果建筑師能在建筑方案、初步設計階段中較好地考慮抗震的要求,則結構工程師就可以對結構構件系統進行合理的布置,建筑結構的質量和剛度分布以及相應產生的地震作用和結構受力與變形比較均勻協調,使建筑結構的抗震性能和抗震承載力得到較大的改善和提高;如果建筑師提供的建筑設計沒有很好地考慮抗震要求,那就會給結構的抗震設計帶來較多困難,使結構的抗震布置和設計受到建筑布置的限制,甚至造成設計的不合理。有時為了提高結構構件的抗震承載力,不得不增大構件的截面或配筋用量,造成不必要的投資浪費。由此可見,建筑設計是否考慮抗震要求,對整個建筑起著很重要的作用。因此,我們在建筑抗震設計過程別要注重以下幾個問題。
一、建筑體型設計問題
建筑體型包括建筑的平面形狀和主體的空間形狀的設計。震害表明,許多平面形狀復雜,如平面上的外凸和凹進、側翼的過多伸懸、不對稱的側翼布置等在地震中都遭到了不同程度的破壞。唐山地震就有不少這樣的震例。平面形狀簡單規則的建筑在地震中未出現較重的破壞,有的甚至保持完好無損。沿高度立體空間形狀上的復雜和不規則在地震時都會造成震害。特別是在建筑結構剛度發生突變的部位更易產生破壞。因此在建筑體型的設計中,應盡可能地使平面和空間的形狀簡潔、規則;在平面形狀上,矩形、圓形、扇形、方形等對抗震來說都是較好的體型。盡可能少做外凸和內凹的體型,盡可能少做不對稱的側翼和過長的伸翼。在體型布置上盡可能使建筑結構的質量和剛度比較均勻地分布,避免產生因體型不對稱導致質量與剛度不對稱的扭轉反應。
二、建筑平面布置設計問題
建筑物的平面布置在建筑設計中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距離、內墻的布置、空間活動面積的大小、通道和樓梯的位置、電梯井的布置、房間的數量和布置等,都要在建筑的平面布置圖上明確下來。而且,由于建筑使用功能不同,每個樓層的布置有可能差異很大,建筑平面上的墻體,包括填充墻、內隔墻、有相應強度和剛度的非承重內隔墻等等布置不對稱,墻體與柱子分布的不對稱、不協調,使建筑物在地震時產生扭轉地震作用,對抗震很不利。有的建筑物,其剛度很大的電梯井筒被布置在建筑平面的角部或是平面的一側,結果在地震中造成靠電梯一側建筑物的嚴重破壞。這是因為電梯井筒具有極大的抗側力剛度,吸引了地震作用的主要部分[3]。有的建筑物,在平面布置上一側的墻體很多,而另一側的墻體稀少,這就造成平面上剛度分布的很不對稱,質量分布也偏心,使結構的受力和變形不協調,導致扭轉地震作用效應,帶來局部墻面的破壞。有的建筑物,如底層為商場的臨街建筑,臨街一側往往不設墻體,而其另一側則有剛度很大的墻體封閉,兩側在剛度上相差很多,也將在地震時引起扭轉地震作用,對抗震不利。還有的建筑平面布置上,經常出現內隔墻不對齊或中斷,使剛度發生突變和地震力傳遞受阻,對抗震也帶來不利,客易引起結構的局部破壞。建筑平面布置設計對建筑抗震關系很大,從概念上要解決的一個核心問題是:建筑平面布置設計上要盡可能做到使結構的質量和剛度分布均勻,對稱協調,避免突變,防止產生扭轉效應。在建筑平面布置的總體設計上要盡可能為結構抗側力構件的合理布置創造條件,使建筑使用功能要求與建筑結構抗震要求融合成一體,充分發揮建筑設計在建筑抗震中的作用。
三、建筑豎向布置設計問題
建筑的豎向布置設計問題在建筑設計中主要反映在建筑沿高度(樓層)結構的質量和剛度分布設計上。無論是單層或多層,還是高層建筑或超高建筑,這個問題是比較突出的。存在的這個主要問題是,由于建筑使用功能的不同要求,如底層或下面幾層是商場、購物中心,建筑上要求是大柱距、大空間;而上面的樓層則是開間較大的寫字樓或布置多樣化的公寓樓,低層設柱、墻很少,而上面則是以墻為主,柱很少。有的建筑在布置上還設有面積很大的公用天井大廳,在不同樓層上設有大會議廳、展廳、報告廳等,建筑使用功能的不同,形成了建筑物沿高度分布的質量和剛度的嚴重不均勻、不協調。突出的問題是沿上下相鄰樓層的質量和剛度相差過大,形成突變[3]。在剛度最差的樓層形成對抗震極為不利的抗震承載力不足和變形很大的薄弱層。這是在建筑設計中必須高度重視的問題。在實際設計中,在建筑使用功能不同的情況下,很可能出現上下相鄰樓層的墻體不對齊,柱子不對齊,墻體不連續,不到底;上層墻多,下層墻少;上層有柱,下層無柱等,使地震力的傳遞受阻或不通;抗震用的剪力墻設置不能直通到底層、剪力墻布置嚴重不對稱或數量太少。所有這些布置都將給建筑物帶來地震作用分布的不均勻、不對稱和對建筑物很不利的扭轉作用。多次大震害表明,建筑物豎向樓層剛度的過大變化,給建筑物造成很多破壞,甚至是整個樓層的倒塌。在1995年的日本阪神大地震中,有多棟鋼筋混凝土高層建筑發生了中間樓層的整體坐落倒塌破壞。因此,盡可能使剪力墻布置比較均勻并使其能沿豎向貫通到建筑物底部,不宜中斷或不到底。盡量避免其某樓層剛度過少,盡量避免產生地震時的鈕轉效應。
四、建筑上應滿足的設計限值控制問題
根據大量震害的經驗總結,現行《建筑抗震設計規范》(GBJll-89)對房屋建筑在建筑設計中應考慮的一些抗震要求的限值控制提出了規定。這些規定,建筑設計應予遵守:一是房屋的建筑總高度和層數;二是對房屋抗震橫墻問題和局部墻體尺寸的限值控制。
五、屋頂建筑的抗震設計問題
在高層和超高層建筑設計中,屋頂建筑是一個重要的設計部分。從近幾年對一些高層建筑抗震設計審查結果來看,屋頂建筑存在的主要問題,一是過高,二是過重。這樣的屋頂建筑加大了變形,也加大了地震作用。對屋頂建筑自身和其下的建筑物的抗震都不利。屋頂建筑的重心與下部建筑的重心不在一條線上,且前者的抗側力墻與其下樓層的抗側力墻體上下不連續時,更會帶來地震的扭轉作用,對建筑物抗震更不利。為此,在屋頂建筑設計中,宜盡量降低其高度。采用高強輕質的建筑材料和剛度分布比較均勻、地震作用沿結構的傳遞比較通暢,使屋頂重心與其下部建筑物的重心盡可能一致;當屋頂建筑較高時,要使其具有較好的抗震定性,使屋頂建筑的地震作用及其變形較小,而且不發生扭轉地震作用。超級秘書網
六、結束語
總的來說,建筑設計是建筑杭震設計的一個重要方面,建筑設計與建筑
抗震設計有著密切關系。它對建筑抗震起著重要的基礎作用。一個優良的建筑抗震設計,必須是在建筑設計與結構設計相互配合協作共同考慮抗震的設計基礎上完成。為此,要充分重視建筑設計在建筑抗震設計中的重要性,在建筑抗震設計中更好地發揮建筑設計應有的作用。
參考文獻:
[1]《建筑抗震設計規范》(CBJll-89),中國建筑工業出版社,2005。
【 abstract 】 the crust activity was active in recent years, with the development of economy, the increase of population, building aseismic performance in architectural design in becomes very important. The first part of this paper from the building in the layout design problems, vertical layout design problems, building shape design problems of the three aspects such as the architectural seismic design should be paid attention to discusses. The second part of the seismic design of buildings from the roof, the design of the building should satisfy the limit control problem in two in architecture design should pay attention to the seismic question proposes the solution measures.
【 key words 】 architectural design, earthquake, wall body, structure, research
中圖分類號:TU973+.31 文獻標識碼:A文章編號:
在建筑設計中是否對抗震予以考慮,起著直接的控制主導作用。對于建筑設計來說,當設計完成后,在結構上就很難有較大的修改,在原則上結構設計此時也只能依照建筑設計的相關要求。如果一個項目的建筑師在最初的建筑方案中、以及在初步的設計階段等中可以較多地考慮抗震等因素,此時結構工程師便可以在結構構件系統方面進行有效合理的布置,如果建筑結構在質量和剛度分布方面等的抗震作用和結構受力與變形能夠均勻協調,那么在一定程度上可以改善并提升建筑結構的抗震性能及抗震承載力;如果建筑師所提供的建筑設計中并沒對抗震要求多加考慮,那么就會給結構的抗震設計帶來很多不必要的麻煩與困難,此時,抗震的設計受到了建筑布置的制約、限制。有時增大構件的配筋量或者截面是為了提高構件的抗震承載力,在一定程度上由此可能會造成不必要的浪費。由此可見,在建筑設計中能否對抗震要求加以考慮,對整個建筑都起著十分重要的作用。
一、建筑設計在建筑抗震設計中應該考慮的關鍵性問題
1、建筑在平面布置設計方面的問題
建筑物在平面的布置是建筑設計中非常重要的組成部分,它能夠直接的反映建筑的使用功能和要求。柱子的間距、對內墻的布置、以及活動空間的面積、樓、電梯的空間分布,房間的分布及數量都需要在建筑的平面設計中明確的展現出來。另外,由于不同建筑物在使用功能方面存在很大的差異,所以對每個樓層都要進行不同的布置,建筑在平面上的墻體是由的填充墻、以及具有相應強度和剛度的非承重內隔墻共同組成的,這些墻體在布置當中存在不對稱的現象,墻體與柱子在分布上的不對稱及不協調,對地震時建筑物的抗震作用發生扭轉,不利于建筑的抗震。有些建筑物將剛度很大的電梯井筒等布置在建筑物平面的角部或者平面的側面,一旦地震發生,對靠近電梯一側的建筑物將產生十分嚴重的破壞。這是由于電梯井筒具有很大的抗側力剛度,對地震產生很強的吸引作用。
2、建筑在豎向布置設計方面的問題
建筑在豎向布置方面的設計問題主要反映在在建筑設計中的建筑的樓層結構質量以及其剛度分布的設計上。這個問題無論是單層建筑還是多層建筑,無論是高層建筑還是超高層建筑中等都是一個比較突出的問題,存在這個問題的主要原因在于,由于建筑的使用功能不同,所以對樓層的結構質量與剛度分布的要求也各不相同。比如說,如果建筑下面的幾層或底層是商場及購物中心,那么在建筑上便提出了大空間,大柱距的要求;如果相對較高的樓層是寫字樓或者公寓,則要求以墻為主,用柱較少;部分建筑設計還設計的有面積相對很大的公共天井大廳、在不同樓層還都設有展廳、大會議室等。
建筑在使用功能方面的不同,便形成了建筑物在高度分布上對質量和剛度的要求不同,這些不同在一定程度可能會導致嚴重的不均勻與不協調。上下相鄰間的樓層在質量和剛度方面相差過大的問題十分突出,容易發生突變。在剛度較差的樓層由于其在抗震承載力方面存在的不足以及容易形成很大的變形形成薄弱層。在建筑設計中這是必須予以高度重視的嚴重問題。在實際的設計當中,由于建筑在使用功能方面存在不同,上下相鄰樓層在墻體上可能會出現無法對齊的現象,由于柱子不對齊,所以墻體就無法實現連續;另外如果是上層墻體多,下層墻體少;上層有柱子,下層無柱子等,也容易阻擋地震力的傳遞;做抗震用的剪力墻等設置不能夠直通到底層的、剪力墻在布置時不對稱或者數量較少等都給建筑物在抗震方面帶來不利影響。由多次大地震的數據表明,由于建筑物的豎向樓層剛度過大會給建筑物帶來更大的破壞,甚至會引起整個樓層的坍塌。
3、建筑在體型設計方面的問題
建筑體型主要指的是建筑物的平面形狀以及其主體在空間形狀方面的設計。地震事實證明,平面形狀復雜的建筑物更易遭受迫害,比如說在平面上存在外凸和凹進的建筑、以及側翼伸懸過多的建筑等在地震中遭受的破壞程度更大。以我國的唐山大地震為例,地震中平面形狀相對簡單而且規則的建筑,在地震中遭受到重創的機率比其他建筑要少,部分平面形狀簡單的建筑在地震中甚至可以完好無損的保留下來。在高度立體空間上形狀相對復雜以及不規律等在地震中等遭受的震害更大。特別是建筑結構的突變更容易造成建筑的破壞。所以,在對建筑體型進行設計時,應該在平面及空間上采用形狀相對簡潔及規則的形狀,比如說,圓形、矩形等都是抗震效果較好的體型;盡量少用外凸或者內凹的形態。
二、建筑設計中應該關注的抗震問題
1、屋頂建筑中的抗震設計問題
在屋頂中建筑中往往存在過高及過重等問題。這就加大的建筑物的變形程度,在一定程度也就削弱了抗震作用,對屋頂建筑以及其下建筑的抗震等都不利。如果屋頂建筑和下部建筑的重心出現不在一條線上的情況、或者屋頂建筑的抗側力墻體與下部建筑的抗側力墻體不能形成連續時,便會削弱整個建筑物的抗震作用。因此,在設計屋頂建筑的時候,應該盡量降低其高度,或者采用比較輕便的新型建筑材料進行裝飾造型。
2、建筑上應滿足的設計限值控制問題
我國現行的《建筑抗震設計規范》中對房屋建筑在抗震方面提出了一定的要求。這些規定,都是建筑在設計中應該遵循的。第一,對房屋建筑在高度和層數方面做了規定。比如說:如果設防的烈度為8度,此時由粘土磚建造的多層房屋的總高度應該控制在18m內,樓層數則應該控制在6層以內;而底層框架多層的磚房在總高度方面要控制在16m以內,樓層數要小于等于5層;如果采用的鋼筋混凝土結構的框架房屋,此時的總高度則應該控制在40m內;采用框架抗震墻的高層建筑也應把總高度控制在100m以內。在目前的實際設計當中,或對總高度或對總層數都進行了超規,有的在具體的建筑設計雖然對總高度未進行超規,但對房屋在高寬比等方面進行了超過規定。所有諸如上述超規,對建筑物在抗震安全方面都可能帶來不利影響,特別是在高寬比過大的多層中產生的不利影響更大。這此情況下,房屋在整體上就存在抗震穩定等問題。第二,便是對房屋在抗震橫墻的間距以及局部墻體的尺寸等方面的限值以及控制。在對建筑的平立面進行布置設計時,要根據具體的實際震害經驗來進行設計控制規定,為建筑設計在抗震方面打好堅實的基礎。
三、總結
總而言之,建筑設計是建筑抗震設計中的一個重要組成部分,建筑設計同建筑抗震設計之間有著十分密切的關系。它是建筑抗震設計中的重要的基礎部分。一個良好的建筑抗震設計,必須是與結構設計和建筑設計之間形成良好的相互配合協作關系,是在共同考慮抗震設計的基礎上協同完成的。因此,在建筑設計中要充分重視建筑抗震設計,另外也要在建筑抗震設計中,注重建筑設計作用的發揮。
【參考文獻】
[1]張新宇,從汶川地震看建筑設計與結構的結合[期刊論文]-山西建筑,2009(22)
[2]何譽,建筑設計在建筑抗震設計中的探討[J]. 中國科技財富, 2010(22)
Abstract: This article researches and analyzes the seismic design of the tall reinforced concrete building, according to the author’s practical experience and summarized relevant materials,.
Key words: high-rise building; concrete building; seismic design; seismic fortification
中圖分類號:TU3文獻標識碼:A 文章編號:2095-2104(2012)
在建筑工程項目建設中,設計階段是整個工程最為關鍵的一個環節,在設計中要考慮到多方面的因素。本文結合工作實踐對高層建筑結構抗震設計進行理論上的研究,從設計理念、設計原則到設計方法進行了探討,雖然有些粗淺,希望對同行們有一定的參考作用。
地震是人類在繁衍生息、社會發展過程中遇到的一種可怕的自然災害。強烈地震常常以其猝不及防的突發性和巨大的破壞力給社會經濟發展、人類生存安全和社會穩定、社會功能帶來嚴重的危害。據統計,歷史上各種自然災害曾毀滅了世界各地 52 個城市,其中因地震而毀滅的城市有 27 個。地震之外的其它各種災害,如水災、火災、火山噴發、風災、沙災、旱災等毀滅的城市為 25 座。因此,地震占災害總數的 52%。可見地震災害確系“群害之首”。研究表明,在地震中造成人員傷亡和經濟損失最主要的因素就是房屋倒塌及其引發的次生災害(約占 95%)。無數次的震害告訴我們,抗震設計是防御和減輕地震災害最有效、最根本的措施。
1 建筑抗震的理論分析
1.1 建筑結構抗震規范 建筑結構抗震規范實際上是各國建筑抗震經驗帶有權威性的總結,是指導建筑抗震設計(包括結構動力計算,結構抗震措施以及地基抗震分析等主要內容)的法定性文件它既反映了各個國家經濟與建設的時代水平,又反映了各個國家的具體抗震實踐經驗。它雖然受抗震有關科學理論的引導,向技術經濟合理性的方向發展,但它更要有堅定的工程實踐基礎,把建筑工程的安全性放在首位,容不得半點冒險和不實。正是基于這種認識,現代規范中的條文有的被列為強制性條文,有的條文中用了“嚴禁,不得,不許,不宜”等體現不同程度限制性和“必須,應該,宜于,可以”等體現不同程度靈活性的用詞。
1.2 抗震設計的理論 擬靜力理論。擬靜力理論是 20 世紀 10~40 年展起來的一種理論,它在估計地震對結構的作用時,僅假定結構為剛性,地震力水平作用在結構或構件的質量中心上。地震力的大小當于結構的重量乘以一個比例常數(地震系數)。反應譜理論。反應譜理論是在加世紀 40~60 年展起來的,它以強地震動加速度觀測記錄的增多和對地震地面運動特性的進一步了解,以及結構動力反應特性的研究為基礎,是加理工學院的一些研究學者對地震動加速度記錄的特性進行分析后取得的一個重要成果。動力理論。動力理論是 20 世紀 70-80 年廣為應用的地震動力理論。它的發展除了基于 60 年代以來電子計算機技術和試驗技術的發展外,人們對各類結構在地震作用下的線性與非線性反應過程有了較多的了解,同時隨著強震觀測臺站的不斷增多,各種受損結構的地震反應記錄也不斷增多。進一步動力理論也稱地震時程分析理論,它把地震作為一個時間過程,選擇有代表性的地震動加速度時程作為地震動輸入,建筑物簡化為多自由度體系,計算得到每一時刻建筑物的地震反應,從而完成抗震設計工作。
2 高層建筑結構抗震設計
2.1 抗震措施 在對結構的抗震設計中,除要考慮概念設計、結構抗震驗算外,歷次地震后人們在限制建筑高度,提高結構延性(限制結構類型和結構材料使用)等方面總結的抗震經驗一直是各國規范重視的問題。當前,在抗震設計中,從概念設計,抗震驗算及構造措施等三方面入手,在將抗震與消震(結構延性)結合的基礎上,建立設計地震力與結構延性要求相互影響的雙重設計指標和方法,直至進一步通過一些結構措施(隔震措施,消能減震措施)來減震,即減小結構上的地震作用使得建筑在地震中有良好而經濟的抗震性能是當代抗震設計規范發展的方向。而且,強柱弱梁,強剪弱彎和強節點弱構件在提高結構延性方面的作用已得到普遍的認可。
2.2 抗震設計理念 我國 《建筑抗震規范》(GB50011-2001)對建筑的抗震設防提出“三水準、兩階段”的要求,“三水準”即“小震不壞,中震可修,大震不倒”。當遭遇第一設防烈度地震即低于本地區抗震設防烈度的多遇地震時,結構處于彈性變形階段,建筑物處于正常使用狀態。建筑物一般不受損壞或不需修理仍可繼續使用。因此, 要求建筑結構滿足多遇地震作用下的承載力極限狀態驗算,要求建筑的彈性變形不超過規定的彈性變形限值。當遭遇第二設防烈度地震即相當于本地區抗震設防烈度的基本烈度地震時,結構屈服進入非彈性變形階段,建筑物可能出現一定程度的破壞。但經一般修理或不需修理仍可繼續使用。因此,要求結構具有相當的延性能力(變形能力)不發生不可修復的脆性破壞。當遭遇第三設防烈度地震即高于本地區抗震設防烈度的罕遇地震時,結構雖然破壞較重,但結構的非彈性變形離結構的倒塌尚有一段距離。不致倒塌或者發生危及生命的嚴重破壞,從而保障了人員的安全。因此,要求建筑具有足夠的變形能力,其彈塑性變形不超過規定的彈塑性變形限值。
三個水準烈度的地震作用水平,按三個不同超越概率(或重現期)來區分的:多遇地震:50 年超越概率 63.2%,重現期 50 年;設防烈度地震(基本地震):50 年超越概率 10%,重現期 475 年;罕遇地震:50 年超越概率 2%-3%,重現期 1641-2475 年,平均約為 2000年。對建筑抗震的三個水準設防要求,是通過“兩階段”設計來實現的,其方法步驟如下:第一階段:第一步采用與第一水準烈度相應的地震動參數,先計算出結構在彈性狀態下的地震作用效應,與風、重力荷載效應組合。并引入承載力抗震調整系數。進行構件截面設計,從而滿足第一水準的強度要求;第二步是采用同一地震動參數計算出結構的層間位移角,使其不超過抗震規范所規定的限值;同時采用相應的抗震構造措施,保證結構具有足夠的延性、變形能力和塑性耗能,從而自動滿足第二水準的變形要求。第二階段:采用與第三水準相對應的地震動參數,計算出結構(特別是柔弱樓層和抗震薄弱環節)的彈塑性層間位移角,使之小于抗震規范的限值。并采用必要的抗震構造措施,從而滿足第三水準的防倒塌要求。
2.3 抗震設計方法 我國的《建筑抗震設計規范》(GB50011-2001)對各類建筑結構的抗震計算應采用的方法作了以下規定:高度不超過 40m,以剪切變形為主且質量和剛度沿高度分布比較均勻的結構,以及近似于單質點體系的結構,可采用底部剪力法等簡化方法;除 1 款外的建筑結構,宜采用振型分解反應譜方法;特別不規則的建筑、甲類建筑和限制高度范圍的高層建筑,應采用時程分析法進行多遇地震下的補充計算,可取多條時程曲線計算結果的平均值與振型分解反應譜法計算結果的較大值。
3 結語
要使工程建設真正達到能夠減輕以至避免地震災害,把握好抗震設計關是減輕地震災害的根本措施。
參考文獻:
[1]朱鏡清.結構抗震分析原理[M].地震出版社,2002.11.
[2]鄭文忠,王英.對既有房屋套建增層改造的認識與思考[J].工業建筑,2008.6.
關鍵詞:建筑結構;抗震設計;關鍵問題;具體舉措
【中圖分類號】TU318【文獻標識碼】A【文章編號】2236-1879(2017)20-0217-01
引言:隨著我國經濟快速發展,一棟棟高樓大廈拔地而起,但與此同時,在我國是地震多發國家的背景下,建筑抗震等安全因素成為設計需要考慮的因素之一,現階段,我國的建筑抗震水平較高,但因地震導致房屋倒塌的情況時有發生,為了能更好的提高建筑抗震水平,在建筑抗震設計方面更加合理,作為中學生了解建筑結構的抗震設計中關鍵問題、具體的抗震設計舉措是很有必要的。建筑結構抗震設計關鍵問題
(一)場地的科學選擇。
建筑場地的科學選擇,直接關系到建筑結構抗震設計的水平與質量。因此,有關的工程設計人員需要對于建筑物建設的場地進行全面的考察工作,選擇具有土質松軟、地質元素分布不均衡的區域來進行地段的選擇,避免地震發生時產生出地裂或者是地表錯動問題。
(二)建筑結構的合理化抗震設計。
建筑結構的合理化設計也對于提升建筑抗震設計的質量與水平發揮著重要的作用。比如:使用高強度的建筑材料使得建筑物的結構框架具有完整性的構造。而高質量設計圖紙的應用,可以使得建筑物的各個部位進行更加合理、科學的布局,最終形成強有力的抗震效果。
(三)建筑平面布置的規則性。
進行滿足有關抗震設計要求的施工,可以極大提高建筑的抗震水平與能力。比如:綜合的考慮到各個方面的因素,應用現代的網絡信息技術進行對稱性的結構設計,將會對于建筑的抗震實際效果進行科學的提升。同時,我們需要清楚的了解到各種科學的設計需要真正的落實到施工實踐中,使得設計的成果真正轉變為實際的應用成果[1]。
一、建筑結構抗震設計的具體舉措
(一)基礎隔震措施。
所謂的基礎隔震指的是應用各種各樣的減震裝置來完成有關建筑物的結構抗震設計。具體來講,將有效的抗震、隔震的裝置應用到建筑物自身的部位中,從而達到保護建筑物,使其具有良好抗震、隔震效果的一種方式。但是,這種方式不適用于高大的建筑物中。原因在于,在高大建筑物中應用抗震裝置會導致建筑物產生出自振周期問題,無法達到應有的抗震效果。在我國的生活中常見的抗震裝置有橡膠墊裝置、混合隔震裝置等。對于這些裝置應用摩擦移動或者是粘彈性隔震的方式就可以進行有效的防震,保障建筑物具有良好的防震要求[2]。
(二)特殊材料在地基隔震中的應用。
應用特殊的材料全面保障建筑物的地基具有良好的防震性能,也是一個重要的防震舉措。具體來講,應用高效的瀝青原料與粘土、砂子等進行混合性的應用,可以提高建筑物整體的質量與水平,保障建筑物的安全。目前這種方法已經在建筑物的防震設計中進行了一定程度的應用,并且取得了不錯的應用效果[3]。
(三)建筑結構懸掛隔震。
所謂的建筑結構懸掛隔震指的是在進行建筑物結構設計工作中,應用懸掛的方式來對于建筑物大部分結構或者是整體的結構進行有效減震處理,使得地震發生時地震災害的破壞力量對于懸掛的建筑結構沒有非常大的影響,最終減輕地震對建筑的破壞程度,避免重大的人員傷亡與財產損失。比如:在一些大型鋼結構建筑中應用懸掛的方式來進行有關的設計,使得有關的子框架通過鎖鏈或者是吊桿方式的應用懸掛在主框架上。這種設計方式應用的意義在于地震發生之后,地震一部分破壞力量會傳導在這些鎖鏈或者是吊桿上,降低了地震對于建筑物地基以及墻面的影響,提高了建筑物地基抗震的實際效果[4]。
(四)建筑層間的隔震。
對于建筑物層間進行有效的隔震是一種操作簡單、工序簡單的應用方式。但是,這種方式與其它方面的隔震使用舉措比較起來只能對于地震破壞力量的10%到30%進行有效的預防,無法從根本上形成強有力的抗震效果。因此,這種方式需要與其它模式的抗震舉措進行綜合性的應用,形成對于建筑物的有力保護,全面提高其應對地震破壞力量的能力。
(五)建筑結構的加固隔震。
為了全面提高建筑物結構的抗震能力,我們需要采取各種的方式對于建筑物進行必要的加固處理,提升建筑物的質量。具體來講,第一,在建筑物竣工之后,有關的工程施工技術人員可以應用阻尼的方式對于建筑物進行全面的加固,最終使得建筑結構的抗震效果得到加強。第二,為了提高高層建筑的抗震效果,我們可以應用消能減震裝置來提高其抗震的能力,使得高層建筑也可以在地震發生時具有對地震破壞力的抵御能力,避免重大的財產損失與人員傷亡。比如:消能減震裝置在建筑物隔震夾層中進行應用,可以極大提高建筑物結構的抗震效果[5]。
二、結論:
通過上述幾個方面,對于建筑物結構抗震若干問題進行科學的研究與探討,有利于建筑物施工的企業應用眾多的具體方法全面提高建筑物結構抗震的質量與水平,保障建筑物在地震發生時具有強有力抵御地震的能力,減少人員的傷亡與財產上的損失。如今總體的設計理念與方式比較先進,但也需要與時俱進,不斷提高建筑抗震等級,為人們的生命和財產安全提高保障。
參考文獻
[1] 古力銘. 關于建筑結構抗震設計若干問題的討論[J]. 四川水泥,2015,06:60.
[2] 曹振. 關于建筑結構抗震設計若干問題的討論[J]. 門窗,2015,06:126.
[3] 邱子龍. 關于建筑結構抗震設計若干問題的討論[J]. 建材與裝飾,2016,08:76-77.
引言
新的《混凝土異型柱技術規程》(JGJl49—2006)(簡稱異型柱規程)于2006年8月頒布,改變了異型柱設計只有地方性規定而沒有國標的歷。隨之而來就是我們對規范的理解可能沒有比較深入的研究,另外《異型柱規程》有些規定比《建筑抗震設計規范》(GB50011-2~1)(簡稱抗震規范)嚴格。現就規范的幾點規定,談談個人的一點看法:
(1)異型柱結構最大適應高度
由于異型柱是一種新型的結構形式,只經過十余年的實踐。綜合考慮現有的理論研究、實驗研究成果及設計施工經驗,其房屋適用的最大高度較一般的鋼筋混凝土結構有所降低。現就《異型柱規程》與《抗震規范》對比見下表:
沈陽市抗震設防烈度為7度,設計基本加速度值為0.10g,超過40米的結構,建議采用短肢剪力墻結構。
(2)異型柱的抗震等級
由于異型柱結構的抗震性能相對于普通混凝土房屋較弱,異型柱結構的抗震等級相對于普通混凝土房屋也應較嚴格。由于異型柱結構的適用范圍較普通混凝土結構小,相應《異型柱規程》的抗震等級分類較《抗震規范》詳細。對于丙類建筑抗震設計的房屋,《異型柱規程》給出了抗震等級的確定方法,現就《異型柱規程》與《抗震規范》的異《抗震規范》現澆鋼筋混凝土房屋的抗震等級《異型柱規程》中表3.3—1注3,當為7度(0.15g)時,建于Ⅲ、Ⅳ類聲地的異形柱框架結構和框架一剪力墻結構情形時,也按8度(O.20g)采取抗震構造措施,但于括號內所示的抗震等級形式來具體表達,需注意的是《異型柱規程》采取了“應”按表中括號所示的抗震等級采取抗震構造措施,比《抗震規范》的上述對應部分規定(“宜”按……)有所加嚴
(3)不規則異型柱結構的抗震設計應符合下列要求
1.當異型柱結構樓層豎向構件的最大水
平位移(或層間位移)與該樓層層兩端彈性水平位移(或層間位移)平均值之比大于1.20時,根據《抗震規范》有關規性,可界定為平面不規則的“扭轉不規則類型”,但《異型柱規程》規性此時控制該比值不應大于1.45(第3.2.5條第1款),較《抗震規范》相應規定“不大于1.5”有所加嚴,目的是為了為嚴格控制異型柱結構平面的不規則性,避免過大的扭轉效應而導致嚴重的震害。
2.當異型柱結構的層間受剪承載力小于上一樓層的80%時,根據《抗震規范》有關規性,可界定為豎向不規則中的“樓層承載力突變類型”,并規定其薄弱層的受剪承載力不應小于上一層的65%,但《異型柱規程》規性此時乘以1.20的增大系數(第3.2.5條第2款),較《抗震規范》相應規定乘以增大系數1.15有所加嚴
(4)異型柱的抗震作用計算規則
1.《抗震規范》第3.1.4條規定:“抗震設防為6度時,除本規范規定外,對乙、丙、丁類建筑可不進行地震作用計算”及第5.1.6條規定:“6度時的建筑(建造于Ⅳ類場地上較高的高層建筑除外),以及生土房屋及木結構房屋,應允許不進行截面抗震驗算。”但《異型柱規程》第4.2.3條則以強制性條文方式規定:“抗震設防為6度、7度(0.1Og、0.15g)及8度(0.20g)的異型柱結構應進行地震作用計算及結構抗震驗算。”本條是基于異型柱結構的抗震性能特點而制定的,6度設防時設計者應注意此條。
2.異型柱的雙向偏壓正截面承載力隨荷載(作用)方向不同而有較大的差異,在L形、T形和十字形三種異型柱中,以L形柱的差異最為顯著(設計者應著重加強L形柱的構造)。如根據《抗震規范》5.1.1條第一款(一般情況下(所有烈度),應允許在建筑結構的兩個主軸方向分別計算地震作用并進行抗震驗算,各方向的水平地震作用應由該方向抗側力構件承擔),則可能在某些情況下造成結構的不安全性,所以《異型柱規程》4.2.4條第一款規定,7度(0.15g)及8度(0.20g)時尚應對與主軸成45°方向進行補充計算。
(5)異型柱的抗震變形驗算
由于異型柱結構的特殊性,《異型柱規程》對異型柱結構的彈性層間位移角限值也較《抗震規范》嚴格,現比較如下:
考慮到異型柱結構的特殊性,本人建議進行異型柱設計時彈性層間位移角應從嚴控制:框架結構【】應小于l,800,框架一剪力墻結構【]應小于1/I100。
(6)異型柱框架梁柱節點核心區受剪承載力驗算。
《抗震規范》附錄D規定: