時間:2023-03-23 15:23:58
導言:作為寫作愛好者,不可錯過為您精心挑選的10篇混凝土結構論文,它們將為您的寫作提供全新的視角,我們衷心期待您的閱讀,并希望這些內容能為您提供靈感和參考。
0引言
混凝土是一種由砂石骨料、水泥、水及其他外加材料混合而成的非均質脆性材料。由于混凝土施工、本身變形和約束等一系列問題,使混凝土裂縫成了土木、水利、橋梁、隧道等工程中最常見的工程病害。輕者使內部的鋼筋等材料產生腐蝕,降低鋼筋混凝土材料的承載能力、耐久性等,嚴重的將威脅到人民的生命、財產。出現混凝土裂縫的原因從微觀上看,混凝土是由水泥、砂、石、空氣、水組成的多相結合體,由于混凝土的組成材料、微觀構造以及所收外界影響的不同,混凝土裂縫產生的原因也有很多種。
1混凝土結構的裂縫依其形成可分為以下三類
1.1靜止裂縫系指形態、尺寸和數量均已穩定不再發展的裂縫。修補時,僅需依裂縫粗細選擇修補材料和方法,而與其它因素無關。
1.2活動裂縫系指其寬度不能保持穩定,易隨著結構構件的受力、變形或環境溫、濕度的變化而時張、時閉的裂縫。修補時,應先消除其成因,并觀察一段時間,確認已穩定后,再依靜止裂縫的處理方法修補;若無法完全消除其成因,則應使用具有足夠柔韌性的材料進行修補。
1.3尚在發展的裂縫系指長度、寬度或數量尚在發展,但經歷一段時間后將會終止的裂縫。對此類裂縫應待其停止發展后,方可進行修復或加固。
混凝土裂縫修補前,應對其成因進行研究,若是由于承載能力不足引起的裂縫,除應選擇相應的方法進行修補外,尚應選用適當的加固方法進行加固。
2修補設計
修補設計原則上應根據第四章是否需要修補及補強加固的判定結果,進行恢復己開裂結構件的機能及耐久性的設計,更重要的是要選擇適當的修補材料、修補工法以及在選擇修補時間的基礎上進行修補設計。進行修補設計時,應考慮如下事項:①根據是否需要修補的判斷結果,設定修補范圍及規模,還應按需要再度調查現場。②掌握開裂原因、開裂狀況(裂縫寬度、深度及型式等),建筑物的重要性及環境條件(一般環境、工廠地區、鹽類環境、溫泉地帶、寒冷地帶及特殊用途)。③為了明確規定修補目的及恢復目標,考慮環境條件,選定最適于修補的修補材料、修補工法及修補時間。選擇修補工法,可按開裂現場及開裂原因決定。另外,當構筑物處于鹽類等苛刻環境時,應選擇比普通環境條件高一個等級的材料及工法。如有可能,裂縫最好在穩定后再作修補;對隨環境條件變化的溫度裂縫,則宜在裂縫最寬時處理。
混凝土建筑物及構件的修補恢復目標將視竣工時的初期性能、建筑物的耐用年限、開裂原因、劣化程度及劣化范圍等而異,另外,保修年限也不盡相同。通常,可將修補恢復目標分成如下三個階段:①恢復到與健全構件同等性能。②恢復到不妨礙使用的程度。③恢復到能夠確保人身安全的程度。一般針對以確保人身安全而進行的應急修補工程。④必須充分研究修補作業所必要的機械材料、腳手架及工程現場對周圍人群的安全保障。
3修補方法
3.1表面修補法①利用混凝土表層微細獨立裂縫(裂縫寬度ω≤0.2mm)或網狀裂紋的毛細作用吸收修補膠液,封閉裂縫通道。對樓板和其它需要防滲的部位,尚應在混凝土表面粘貼纖維復合材料以增強封護作用。常用的方法為涂覆法,增加整體面層,壓抹環氧膠泥,環氧漿液粘玻璃絲布,表面縫合等。②涂覆法:混凝土表面出現數量較多的表面裂縫時,采用手工或機械噴涂方法,將修補材料涂覆于混凝土表面,起到表面封閉作用。涂膜厚度在0.3~2.5mm之間,厚度大者適應裂縫變化能力強。選用修補材料時應考慮使用條件(室內、室外、環境溫濕度變化,介質腐蝕情況)以及裂縫活動情況等,例如,要求耐磨的地坪可選用環氧瀝青涂料,聚氨酷涂料,聚氨酷瀝青涂料等剛性涂料,不穩定的裂縫修補可選用聚氨酷彈性體,橡膠型丙烯酸酷涂料等彈性涂料。③增加整體面層:混凝土表面裂縫數量較多,分布面較廣時,常采用增加一層水泥砂漿或細石混凝土整體面層的方法處理。多數情況下,整體面層內應配置雙向鋼絲網。有條件時,宜采用噴射法施工水泥砂漿或混凝土整體面層。3.2局部修復法①充填法用鋼釬、風鎬或高速轉動的切割圓盤將裂縫擴大,最終鑿成V形或梯形槽,分層壓抹環氧砂漿、或水泥砂漿、或聚氯乙烯膠泥、或瀝青油膏等材料封閉裂縫。其中V形槽適用于一般裂縫修補;梯形槽用于滲水裂縫修補;環氧砂漿適用于有結構強度要求的修補;聚氯乙烯膠泥和瀝青油膏僅適用于防滲漏的修補。②預應力法用鉆機在構件上鉆孔,注意避開鋼筋,然后穿入螺栓(預應力鋼筋),施加預應力擰緊螺帽,使裂縫減小或閉合。如條件許可時,成孔的方向應與裂縫方向垂直,鉆孔方向不與裂縫垂直時,宜采用雙向施加預應力。③部分鑿除重新澆筑混凝土對于鋼筋混凝土預制梁等構件,由于運輸、堆放、吊裝不當而造成裂縫的事故時有發生。這類裂縫有時可采用鑿除裂縫附近的混凝土,清洗、充分濕潤后,澆筑強度高一等級的混凝土,養護到規定強度的修補方法。修補后的構件仍可使用在工程上。用這種方法修補己斷裂的構件應特別慎重。此外,修補前應檢查鋼筋的實際應力和變形狀況。修補混凝土宜用微膨脹型。修復工作必須十分仔細認真,否則新老混凝土結合不良將導致失敗。
3.3灌漿法將水泥或化學漿液灌入混凝土縫內,使其擴散,固化。固化后的漿液具有較高的粘結強度,與混凝土能較好地粘結,從而增強了構件的整體性,使構件恢復使用功能,提高耐久性,達到堵漏防銹補強的目的。用于結構修補的化學漿液主要有兩類:一類是環氧樹脂漿;另一類是甲基丙烯酸甲酷液(簡稱甲凝液)。用于防滲堵漏的化學漿液主要有:水玻璃、丙烯酞胺、聚氨酷、丙烯酸鹽等。這些不溶物可充填縫隙,使之不透水并增加強度。
3.4低壓慢注修補法(注射法)以一定的壓力將修補膠液注入裂縫腔內;此法適用于處理0.2<ω<1.5mm靜止的獨立裂縫、貫穿性裂縫以及蜂窩狀局部缺陷。可使用JN-L低粘度灌縫膠及JN-F封口膠。
3.5壓力注漿法在一定時間內,以較高壓力(按注漿料產品說明書確定)將灌注材料壓入裂縫腔內;此法適用于處理大型結構貫穿性裂縫、大體積混凝土的蜂窩狀嚴重缺陷以及深而蜿蜒的裂縫。可使用JN-J或HPG兩種水泥基改性材料,也可使用JN-M結構灌注膠。
3.6填充密封法在構件表面沿裂縫走向騎縫鑿出U形或V形溝槽,然后用改性環氧樹脂或彈性填縫材料填充,必要時以纖維復合材料封閉其表面;此法適用于處理ω>0.5mm的活動裂縫和靜止裂縫。可使用JN-XF裂縫封閉膠或JN-LE彈性灌縫膠。
民用建筑混凝土結構裂縫修補工法多種多樣,但我們不能只知其一、只用其一,而應牢牢掌握每一種方法,以一變應萬變,做到根據不同情況采取不同方法,切實從每一個環節入手,做好過程控制,完善施工手段,確保施工質量,盡量實現修補最優。
(1)粗細骨料的選用。
在滿足泵送要求及鋼筋間距的基礎上,為降低水及水泥的使用量,應盡量選擇大粒徑的碎石。除此之外,還應該采用干凈、強度高、針片狀少的粗細骨料,且將其含泥量控制在l%以內,同時確保粗細骨料不含有有機物質和有毒有害物質。
(2)粉煤灰的選用。
粉煤灰是一種非常重要的摻合料,不僅可以將混凝土的和易性大大提高,而且對混凝土的泵送施工十分有利;同時粉煤灰還能代替部分水泥來降低水泥的使用量,從而使水泥的水化熱得到有效降低。在進行粉煤灰的選擇時必須對其細度及粒度引起注意,對粉煤灰進行磨細加工必須要達到I級標準。但是如地下室混凝土類有較高抗滲要求的,需要在滿足必混凝土的抗滲性能的基礎上,通過嚴格的計算及試驗來確定是否能夠將粉煤灰摻入。粉煤灰的選用需結合實際情況進行。
(3)外加劑的選用。
為保證大體積混凝土的優質澆筑效果,應對外加劑種類進行合理選擇。可適當采用減水劑、膨脹劑、緩凝劑等來降低水的用量,進而達到降低水泥的水化熱的目的。應通過配合比試驗來確定外加劑的使用量,同時注意外加劑比例的搭配,保證達到澆筑效果。
1.2加強對施工過程的控制
(1)混凝土的澆筑
①混凝土的攤鋪厚度的確定,需結合混凝土的和易性及所用振搗器的作用深度兩個方面。如采用泵送混凝土,則攤鋪厚度應不大于600毫米;如采用非泵送混凝土,則攤鋪厚度應不大于400毫米。如采用推移式連續澆筑或分層連續澆筑的方式,應盡可能地將層間的間隔時間縮短,根據試驗確定混凝土的初凝時間,并在前層混凝土初凝之前將其次層混凝土澆筑完畢;②目前在大體積混凝土結構施工中,采用較為普遍的澆筑方法是分層連續澆筑法,其具有振搗方便、能保證澆筑質量及可通過混凝土層散熱,降低混凝土溫升幅度等諸多優點。而對于澆筑能力不夠、澆筑面積和澆筑工程量較大且一次連續澆筑層厚度通常不超過3m的混凝土工程,可以選擇采用推移式連續澆筑法;③在分層進行大體積混凝土結構的澆筑時,應對其表面進行及時清理,將骨料均勻露出;在澆筑上層混凝土前應及時清理混凝土的表面污物,沖洗完畢后不能留有積水,對非泵送混凝土和較低流動度的混凝土可進行適當接漿處理;④在澆筑大體積混凝土時,應及時將混凝土表面的泌水清除。由于泵送混凝土一般具有較大的水灰比,因而普遍存在較為嚴重的泌水現象,需及時清除泌水,避免影響大體積混凝土的澆筑質量。
(2)混凝土的溫測
混凝土的溫測技術對保證大體積混凝土結構的施工質量也有著直接影響。對大體積混凝土結構的溫度有效控制混可以防止產生底板裂縫。在進行混凝土溫測時,必須測量所有土層的溫度,并深入分析各土層的溫度特性。目前普遍使用的溫度傳輸器是電阻型溫度計,在進行溫度測量時,應將測溫度位置選定,完成記號的編訂和定位后,再進行土層溫度的測量工作。控制溫度應力可以通過以下兩種方法進行:一種是降溫法,可以事先按照設計要求將冷卻水管在大體積混凝土內部安裝好,并在澆筑前試水,避免由于漏水而影響混凝土的澆筑質量。通過循環冷卻水降低混凝土內部溫度,減小內外溫度差異,防止大體積混凝土裂縫的產生;另一種是保溫法,即在澆筑完混凝土之后,通過使用人工手段提高砼表面及四周散熱面的溫度,進而有效控制混凝土的溫度,保障大體積混凝土結構的施工質量。
(3)混凝土的養護
大體積混凝土的養護工作對保障混凝土結構質量安全有著不可忽視的作用,必須得到重視。而在大體積混凝土的具體施工過程中,很多施工人員恰巧會忽略對混凝土的養護工作,只注重對混凝土的澆筑施工,致使大體積混凝土產生裂縫,從而給建筑結構的日后使用埋下安全隱患。并且如果沒有及時處理裂縫問題,使裂縫繼續擴大,就會對建筑結構的使用性能和安全性能造成惡劣影響。因此結束大體積混凝土的澆筑工作后,必須及時對混凝土進行養護。施工季節不同,養護手段也不盡相同。夏季施工時,由于溫度較高,因此應該可通過灑水濕潤來養護混凝土;冬季施工時,由于溫度很低,因此可通過保溫保濕措施來養護混凝土,另外,當環境溫度低于5℃時應暫停大體積混凝土的澆筑工作,待溫度達到5℃之后,在繼續進行澆筑工作。在對混凝土進行養護期間,應時刻關注混凝土的內外溫差情況,可通過循環水流量及進口的水溫的調節來對內外溫差進行控制,將其控制在25℃范圍內。大體積混凝土的養護時間應在十四天以上,如情況特殊,則應結合實際情況將養護時間適當延長。
據公安部消防局統計,2005年全國共發生火災235941起,死亡2496人,傷殘2506人,直接財產損失13.6億元。近年來,預應力混凝土結構已由早期的簡單構件發展為現今復雜的空間整體受力結構,以其大跨度、大空間、良好的結構整體性能以及有競爭力的綜合經濟效益,正逐步成為現代建筑結構形式的發展趨勢,由于預應力混凝土結構的抗火性能劣于普通鋼筋混凝土結構,因此開展預應力混凝土結構的火災反應和抗火性能研究是非常有意義的。
1預應力混凝土結構火災研究的現狀
國外學者對結構抗火性能的研究開展較早,始于20個世紀初,并成立了許多抗火研究組織,比較有名的有美國建筑火災研究實驗室、美國消防協會、美國的波特蘭水泥協會、美國預應力混凝土協會、英國的BRE(BuildingResearchEstablishment)。這些組織對建筑結構的抗火性能進行了系統的研究,主要體現在對建筑材料高溫下的力學性能;結構、構件火災下的升溫過程及溫度場的確定;火災條件下結構和構件的極限承載能力及耐火性能方面的研究,并編訂了相應的建筑規范及行業規則。
國外預應力混凝土構件抗火性能的研究稍晚于鋼筋混凝土結構,主要工作始于20世紀70年代初期。盡管早期Ashton等人的試驗研究認為預應力混凝土在火的作用下存在許多問題,但其后一些學者的試驗和研究表明預應力混凝土構件在火的作用下仍具有較好的工作性能。
有關文獻介紹了美國進行的18個后張預應力混凝土板和梁的耐火試驗。在這些試驗構件中,預應力筋分為有粘結和無粘結兩種。在耐火試驗中,實測了時間與預應力筋溫度關系,典型的時間-溫度曲線如圖1所示。在圖中還可以看出不同保護層厚度與耐火時間的關系。
Gustaferro等人在預應力混凝土抗火方面做了不少試驗研究,他們對有粘結預應力混凝土梁、預應力混凝土簡支板、預應力混凝土連續梁、板等結構或構件在不同情況下的抗火性能進行了試驗研究,并對預應力混凝土結構的抗火性能提出了合理的計算方法。他們通過對后張預應力混凝土梁和板的抗火試驗,得出在1,2,3,4小時的抗火等級下的保護層厚度和構件最小尺寸的建議值。Ashton等人與Gustaferro同期也進行了一系列相應的預應力梁抗火試驗研究,包括不同比例試件的耐火極限試驗的對比,試驗結果表明預應力混凝土能滿足結構的不同耐火等級,其耐火性能主要取決于其預應力筋在火災中所達到的溫度,因此預應力筋的保護層厚度和梁的截面形式對預應力混凝土結構的耐火性能具有明顯的影響,結構在火災下的承載力隨混凝土的保護層厚度增加和荷載減少而提高,并且輕骨料預應力混凝土板的抗火性能好于普通預應力混凝土板。Joseph等進行了后張無粘結預應力混凝土板的試驗研究,試驗著重研究了預應力鋼筋保護層厚度對構件抗火性能的影響同時研究了荷載和端部約束情況的影響、輔助鋼筋的作用等問題。Abrams等人對不同骨料和噴有隔離層的預應力混凝土構件的抗火性能進行了試驗研究,Krishnamoorthy等人通過徐變和溫度對預應力混凝土框架性能的試驗研究得出了試驗結果,其中包括不均勻溫度對結構變形性能的影響及內應力和彎矩隨時間的變化。
國外根據預應力混凝土梁、板等方面的試驗研究結果,已對預應力混凝土在火災作用下的承載力及極限耐火時間有了較全面的了解。他們認為溫度是影響預應力混凝土結構蠕變性能的主要因素,要建立合理的分析方法必須考慮混凝土溫度蠕變特性,彈性理論已不適用,蠕變率的分析方法被認為是預測整個加載階段結構特性較滿意的方法。他們的試驗研究為預應力混凝土抗火設計提供了直接依據。
國內抗火研究組織從20世紀80年代后期起著手進行鋼筋混凝土結構的抗火性能研究,但國內關于預應力混凝土抗火方面的試驗研究尚處于起步階段,缺乏足夠的試驗數據。國內規范中涉及預應力混凝土的抗火內容主要是參考國外經驗確定的,如《無粘結預應力混凝土結構技術規程》防火部分第三章第3.2.1條規定用保護層厚度來滿足不同耐火等級要求,它對不同耐火極限下無粘結預應力混凝土保護層厚度的確定,主要取自美國《后張預應力混凝土手冊》。同濟大學對5榀相同尺寸的單層無粘結預應力混凝土框架、3榀有粘結預應力框架和預應力鋼絲進行了火災試驗,得出了一些有用的結論,主要有以下幾個方面:①在高溫作用下,預應力鋼絲的強度、彈性模量、延伸率均表現出與常溫下不同的性能。強度和彈性模量隨溫度升高而下降,延伸率則隨溫度的升高而增大;②對于預應力混凝土結構,火災升溫速率和溫度越高,其抗火性能越差;在同一升溫條件下,預應力混凝土結構承受的荷載越大,其抗火性能越不利;③對于預應力框架結構,與普通混凝土結構框架試驗結果不同,荷載大小對抗火性能的影響可能要比溫度的影響明顯。預應力度大的結構受溫度影響大,抗火性能差。預應力筋的有效應力大的結構,其抗火性能比有效應力小的結構差。無粘結預應力混凝土結構的抗火性能比有粘結預應力混凝土結構的抗火性能差。火災后預應力混凝土結構的剛度明顯減小,但仍存在一定的承載力,并反映出較好的恢復性能。
2存在的問題
盡管國內在鋼筋混凝土結構抗火方面的研究工作已經取得長足進步,但在預應力混凝土結構火災性能方面的研究才剛剛起步。誠然,預應力混凝土結構的抗火性能與一般鋼筋混凝土結構在許多方面有相似性,但由于預應力混凝土結構自身的特性,這方面的研究還存在著許多問題,主要表現為以下方面:一是到目前為止各國學者所進行的試驗及研究,基本上是以預應力混凝土簡支構件在標準火災下極限耐火時間為研究對象,主要考慮了截面內部溫度分布及升溫對預應力鋼筋強度的影響等因素;二是以往試驗主要研究預應力混凝土構件的耐火性能,由于結構的相互作用,因此受火構件的熱變形將對其他構件產生影響,并存在較大的內力重分布,目前尚無專門研究,一般的解決辦法是直接引用普通鋼筋混凝土連續梁等火災的有關結果,而這些結果是否能直接使用于預應力混凝土結構尚缺乏試驗驗證;三是以往的分析方法僅以熱傳導作為判斷依據,無法對結構響應和損傷如位移、開裂、屈服等進行有效的判斷,特別是材料的高溫蠕變對結構火災響應的顯著影響缺少一定的研究;四是與普通混凝土相比,預應力混凝土具有許多特殊性,而以往的試驗研究較少涉及。
3今后應開展的工作
(1)預應力材料高溫性能研究。采用高強預應力鋼絲和鋼絞線是目前高效預應力混凝土的一個主要特征,因此預應力鋼絲和鋼絞線在高溫下的蠕變性能是預應力混凝土結構抗火性能研究的基本內容。必須要通過材料試驗研究高強鋼絲和鋼絞線在高溫下的強度、變形、彈性模量的變化規律,特別是鋼絲和鋼絞線的高溫蠕變性能對預應力混凝土結構的有效預應力的影響。此外要重視材料高溫(火災)性能數據庫的建立。由于混凝土和鋼材本身化學成分的差異,在溫度影響下材料熱工、力學性能有較大的離散性,如何對目前國內外進行的高溫材料試驗結果進行總結,并建立可供計算機程序調用的材料高溫(火災)性能數據庫是火災材料研究的一個重點。
(2)高溫下預應力整體結構的非線性有限元分析。擬用傳熱學的基本原理,得到差分-有限元瞬態非線性溫度場計算基本方程和各類常用邊界條件,由此計算預應力混凝土結構溫度場分布,并根據熱彈塑性基本理論建立預應力混凝土火災反應的非線性有限元分析基本方程。方程可用于分析預應力混凝土結構火災下的變形、內力變化及預應力筋的應力隨時間變化的過程,確定預應力結構火災反應的一些基本特征。
(3)結構火災的計算機仿真試驗分析。一方面預應力混凝土結構火災試驗是最直接反應預應力混凝土結構抗火性能的手段,但預應力混凝土結構通常都應用于各類大跨度、大空間結構,由于試驗條件限制,無法進行足尺模型試驗,采用縮小比例的模型能基本反映火災全過程的反應規律,但仍然有一定的差距。另一方面,由于受試驗條件、試驗經費的限制,也無法進行大量的模型試驗。在進行模型試驗的同時,要研究如何采用計算機仿真試驗以避免上述限制。通過大量仿真試驗,了解不同形式預應力混凝土結構的抗火能力,并提出改善預應力混凝土結構抗火能力的方法。筆者通過對有粘結預應力框架火災位移的計算機仿真分析,可以得出如圖2所示的有粘結預應力框架火災下位移的實測值和計算機仿真分析結果的比較。由圖2可見,計算所得的位移變化規律與實測相符,但仿真分析得到的結構位移較實測要大,誤差最大時為40%。產生誤差的主要原因可能由于試件混凝土含水率偏高,造成計算溫度場高于實際溫度分布,而結構的溫度變形及材料性質與溫度密切相關,從而產生結構計算誤差。并且溫度越高,材料的物理、力學性能離散性越大,另一方面,材料的高溫蠕變的相關資料較少,這些也會造成一定的誤差。總之仿真分析時的參數取值是否準確將影響分析結果,合理的參數取值依賴于可靠的實驗結果。
(4)結構火災反應的可靠度分析。由于火災發生的可能性、火災的持續時間和峰值強度、發生火災時結構承受的荷載等因素并不確定,材料在高溫下性能更趨于離散,上述因素均會影響結構的耐火性能。在無粘結預應力結構中,還存在錨固失效的可能性,以及結構局部失效可能產生的整體失效等,因此如何在設計中對這些因素進行綜合考慮,以確定其耐火安全度是結構火災的一個重要研究內容。結構火災下的可靠度分析也是對現有遭受過火災的建筑物進行評估的一個重要方面。
(5)結構抗火設計計算機模塊的研制。目前對特定結構進行火災全過程非線性有限元分析在理論上是可行的,但不免繁復的運算過程。因此有必要編制具有工程準確度的、概念清晰且簡易實用的結構抗火設計計算機程序,并實現和現有通用結構設計軟件進行接口是結構抗火試驗研究工程化的一個關鍵。
參考文獻
1前言
混凝土結構以其整體性好、耐久性好、可塑性強、維修費用少等優點廣泛使用于整個20世紀,發現混凝土的耐久性問題則是在60至70年代。一些發達國家的混凝土橋使用了三四十年后,紛紛進入老化期。人們始料不及的是混凝土材料在不利的環境、運用條件下,出現了一系列影響結構耐久性的物理、化學現象,如結構混凝土的碳化、保護層剝落、裂縫的發展、鋼筋銹蝕、滲透凍融破壞、混凝土集料的化學腐蝕等等。我國七十年代后期建造的混凝土橋梁亦發現有嚴重的開裂現象。因而混凝土結構的耐久性問題已成為結構工程師們不容忽視的一個問題。
混凝土結構的耐久性概括起來是指混凝土抵抗周圍不利因素長期作用的性能。結構耐久性問題主要表現為:混凝土損傷;鋼筋的銹蝕、脆化、疲勞、應力腐蝕;以及鋼筋與混凝土之間粘結錨固作用的消弱等三個方面。從短期效果而言,這些問題影響結構的外觀和使用功能;從長遠看,則為降低結構安全度,成為發生事故的隱患,影響結構的使用壽命。下面從影響混凝土結構耐久性的主要因素和提高耐久性的技術措施兩個方面來探討混凝土的耐久性問題。
2影響混凝土結構耐久性的主要因素
(1)混凝土的材質。
混凝土是碎石、砂、水泥和水拌合后凝硬而成。這些材料的優劣直接影響到硬化后混凝土的質量(包括密實度和強度等),好質量的材料將為工程使用期混凝土的耐久性打下良好的基礎。近年來由于基本建設的迅猛發展,施工中往往忽略對材質的要求,工地上只檢查混凝土試件的強度作為材質的唯一標準。豈知不合規格的材料,將導致混凝土收縮徐變量大大增加,初始裂縫大量產生,這對混凝土結構安全將是一嚴重隱患。
(2)混凝土的密實性。
混凝土的內部缺陷(不密實),使混凝土在使用過程中易受各種不利因素的侵襲,主要有如下幾種形式:
①滲透:當混凝土不密實,空氣和水容易滲入,水中有害物質就易對混凝土產生化學侵蝕,影響混凝土的耐久性。
②碳化:混凝土中因水泥石含有氫氧化鈣而呈堿性,在鋼筋表面形成堿性薄膜而保護鋼筋免遭酸性介質的侵蝕,起到了“鈍化”保護作用。但當混凝土密實度低,空氣中水和C02滲入,形成碳酸,盡管其酸性很弱,也能中和氫氧化鈣使鋼筋銹蝕,這一過程成稱混凝土的“碳化”。
③凍融破壞:混凝土不密實,體內滲入的水量大,低溫時水結冰體積膨脹產生壓力,從內部破壞混凝土的微觀結構,經多次凍融循環后,損傷積累將使混凝土剝落酥裂,強度降低。
(3)混凝土結構所處的環境條件。
工程結構使用時所處的環境條件是影響混凝土結構耐久性的外部因素,如海水侵蝕、大氣腐蝕、極高溫度、冰凍、水、風、地震災害的襲擊等。根據環境條件對混凝土耐久性的影響,《橋規》(JTGD62)根據公路橋梁的使用情況,將橋梁結構使用環境條件劃分為下列4類:
Ⅰ類環境——系指溫暖或寒冷地區的大氣環境;與無侵蝕性的水或土接觸的環境。
Ⅱ類環境——系指嚴寒地區的大氣環境;使用除冰鹽環境;濱海環境。
Ⅲ類環境——系指海水環境。
Ⅳ類環境——系指受侵蝕性物質影響的環境。
在上述環境分類中,嚴寒地區是指累年最冷月平均溫度低于-10℃地區;寒冷地區是指累年最冷月平均溫度高于-10℃,低于或等于0℃的地區。除冰鹽環境是指北方城市依靠噴灑鹽水除冰化雪的且其主梁受到侵蝕的環境;濱海環境是指海水浪濺區以外且其前無建筑物遮擋的環境;海水環境是指潮汐區、浪濺區及海水中的環境;受侵蝕性物質影響的環境是指某些化學工業和石油化工廠的氣態、液態和固態侵蝕性物質影響的環境。
如上所述,混凝土結構的耐久性取決于混凝土材料的自身特性和結構的使用環境,同時與結構設計、施工及養護密切相關。3提高混凝土結構耐久性的主要技術措施
(1)合理選擇混凝土結構的組成材料。
混凝土各組成材料及鋼筋的選用應滿足材料的耐久性質量要求,應按規范規定對進場原材料進行嚴格的質量檢驗。同時合理改善顆粒級配,提高混凝土的密實性。從而提高耐久性。
(2)提高混凝土的密實性。
控制混凝土的最大水灰比和最小水泥用量,改善混凝土的施工工藝,攪拌均勻、充分振搗,加強養護,嚴格控制施工質量。除了選擇及配良好的集料和精心施工保證混凝土充分搗實和水泥充分水化外,水灰比是影響混凝土密實性的最重要的條件,故《橋規》(JTGD62)中規定了各類環境條件下滿足混凝土耐久性要求的最大水灰比和最小水泥用量值。同時適當摻用外加劑,如摻用減水劑或引氣劑,可改善混凝土的孔隙結構,提高混凝土的密實性。
(3)改進結構設計。
結構的選型、布置和構造應有利于減輕環境因素對結構的作用。采用具有防腐保護的鋼筋(例如,體外預應力筋,無粘結預應力筋,環氧涂層鋼筋等);加強構造配筋,控制裂縫發展;加大混凝土保護層厚度等。《橋規》(JTGD62-2004)與舊《橋規》相比,構造鋼筋用量增多,混凝土保護層加大,構造不合理的地方進行了調整。
(4)采用高強混凝土以提高結構物的耐久性。
高強度混凝土(50MPa以上)的配制特點就是低水灰比,加外加劑,摻用超細活性摻合料,它的研制和應用解決的核心問題之一就是保證耐久性。由于高強混凝土的密實性能好,抗滲、抗凍性能均優于普通混凝土,因此不但適用于高層和大跨度結構物,對于海洋和港口工程,其抗滲和耐腐蝕性能均大大優于普通混凝土。
(5)加強橋面排水和防水層設計,改善橋梁的環境作用條件。
(6)加強結構使用階段的維護與檢測,提高混凝土的耐久性。
4結語
混凝土破壞絕非是某一孤立原因造成的,多是與其他綜合不利因素有關。本文通過對影響混凝土結構耐久性主要因素的分析,提出綜合提高混凝土結構的各種性能是改善和提高混凝土耐久性的主要措施。從混凝土技術的發展來看,采用高強度混凝土是解決結構耐久性要求的發展趨向。
參考文獻
[1]戴文躍,安美華.高性能混凝土發展前景淺析[J].中國建設信息,2006,(11)
1工程概況及特征
中石化股份有限公司金陵分公司160萬噸/年延遲焦化裝置是目前亞洲最大的焦化生產裝置。該裝置的主要反應部分是兩臺焦炭塔,焦炭塔塔高約42m,直徑9.4m,由厚25~40mm15CrMo合金鋼板焊接而成。由中石化洛陽工程公司設計。
焦炭塔坐落在兩層鋼筋混凝土框架上,六根框架柱柱高19.3m,柱截面為1.8m×1.8m、每層框架的面積為13.2m×24.6m,二層框架平臺板厚2.4m,板中開有兩個直徑為7.8m的孔洞,每個孔洞旁設置24個M56螺栓用于固定焦炭塔裙座。
焦炭塔框架頂層鋼筋混凝土板厚2.4m,混凝土方量大約為450m3,屬于大體積鋼筋混凝土結構。每個焦炭塔自重約300t,生產時最大垂直荷載約2000t。焦炭塔安裝就位后須對復合鋼板進行熱處理,熱處理時溫度高達690%26ordm;C,正常生產時塔內最高溫度高達500%26ordm;C。焦炭塔外壁雖有保溫層,但在裙座底部及塔底蓋四周保溫層很難覆蓋嚴密,使得焦炭塔底座四周混凝土的輻射溫度高達95%26ordm;C。
據有關資料,山東某石化公司延遲焦化裝置焦炭塔框架混凝土板共出現160多條裂縫,其中裂縫寬度0.3~0.32mm有4條,0.15~0.25mm有23條,0.15mm以下的133條。這些裂縫主要沿孔內側周邊分布,并由板孔下角向外發展,裂縫在最小斷面處最多,板的外側裂縫均在板的中部,裂縫寬度呈中間大兩頭小。此種裂縫的出現會引起鋼筋銹蝕,混凝土碳化,降低混凝土的抗凍融、抗疲憊及抗滲能力等。湖北某煉油廠延遲焦化裝置焦炭塔框架頂層鋼
筋混凝土大厚板也出現類似情況。
2厚板溫度裂縫成因及纖維抗裂機理
混凝土溫度裂縫多發生在大體積混凝土表面或溫差變化較大的結構中。焦炭塔框架頂層鋼筋混凝土板為大體積混凝土結構,此類結構混凝土澆筑后,硬化過程中水泥水化產生大量水化熱。當水泥用量在350~550kg/m3,每m3混凝土將釋放出17500~27500kJ的熱量,從而使混凝土內部溫度升達70%26ordm;C左右甚至更高。由于混凝土的體積較大,大量的水化熱聚積在混凝土內部而不易散發,導致內部溫度急劇上升,而混凝土表面散熱較快,這樣就形成內外的較大溫差,較大的溫差造成內部和外部熱脹冷縮的程度不同,使混凝土表面產生一定的拉應力。實踐表明當混凝土本身溫差達到25%26ordm;C~26%26ordm;C時,混凝土內便會產生大致在10MPa左右的拉應力。當拉應力超過混凝土的抗拉強度極限時,混凝土表面就會產生裂縫。此外,根據金陵分公司160萬噸/年延遲焦化裝置的生產工藝要求,每個焦炭塔每24h完成一爐焦炭的生產,兩個焦炭塔交替生產,也就是說焦炭塔底座四周混凝土每24h就會由正常的室外溫度迅速上升到95%26ordm;C左右。這樣也會在混凝土內外產生較大溫差。
由此可見,假如不采取非凡辦法,混凝土內外溫差會引起焦炭塔框架頂層鋼筋混凝土大厚板開裂。為此采用在混凝土中加入纖維的方法來解決厚板開裂的新問題。
當在水泥基材料中摻入纖維后,由于此時表層材料中存在纖維材料,使得其失水面積有所減少,水分遷移較為困難,從而使毛細管失水收縮形成的毛細管張力有所減少。同時,依靠纖維材料和水泥基之間的界面吸附粘結力、機械嚙合力等,增加了材料反抗開裂的塑性抗拉強度,從而使材料表層的開裂狀況得以減輕,甚至消失。
有關試驗表明當纖維加入量為混凝土體積的0.1%左右時,混凝土抗拉強度不會提高很多,但摻入少量的聚丙烯纖維可以促進混凝土抗拉性能后期強度的持續增長,這是一種纖維的補強效應而非增強效應,纖維抑制混凝土裂縫產生是由于纖維的阻裂效應。對于混凝土這類內部原來有缺陷的材料,其開裂強度可因混凝土內加入纖維后,混凝土的韌性增大、裂縫尺寸減少或裂縫尖端應力集中系數降低而得到提高。
3杜拉纖維混凝土在厚板中的應用
中石化股份有限公司金陵分公司160萬噸/年延遲焦化裝置焦炭塔框架二層混凝土大厚板采用了杜拉纖維混凝土的工藝,目的是阻止或減少混凝土大厚板中裂縫的出現。杜拉纖維(DURAFIBER)是一種經過非凡生產工藝處理的高強聚丙烯單絲纖維。它的表面處理技術確保纖維在水泥漿中具有極佳的分散性,在攪拌過程中不結團;纖維和水泥基體有良好的粘結強度。杜拉纖維的長度為19mm,纖度19D,比重為0.91,抗拉強度為276MPa(和1#鋼相近),彈性模量為3793MPa,拉伸極限為15%,對酸、堿都有極強的抵御能力。杜拉纖維經過非凡的抗紫外線處理,具有一定的抗紫外線老化能力。杜拉纖維加入混凝土中采用常規攪拌設備攪拌,只要略延長攪拌時間即可均勻分布于混凝土中。
3.1混凝土原材料選擇
(1)水泥。采用南京江南粉磨有限公司生產的P.O42.5水泥,細度為0.60%,3d抗折強度為5.8MPa,3d抗壓強度為24.4MPa,初凝時間為2h30min,終凝時間為3h35min。
(2)粗集料。采用湯山采石場的5~25mm碎石,泥含量為0.5%,泥塊含量0.1%,針片狀顆粒8.0%,壓碎值7.2%,密度2530kg/m3,松散體積密度1593kg/m3,空隙率37.2%。
(3)細集料。采用無為砂場的中粗砂,泥含量為0.5%,泥塊含量為0.3%,細度模數為2.5,級配區為п級,密度2630kg/m3,松散體積密度1550kg/m3,空隙率41%。
(4)外加劑。采用南京江南粉磨有限公司生產的NF-15混凝土外加劑。
(5)活性拌和物。采用南京熱電廠的粉煤炭。
(6)合成纖維。采用美國希爾兄弟化工公司生產的杜拉纖維。
3.2混凝土配合比
強度等級為C40,混凝土坍落度為160~180mm。配合比見表1。
表1纖維混凝土配合比
原材料名稱
水泥
黃砂
石子
外加劑
水
粉煤灰
杜拉纖維
規格
P.O42.5
中粗砂
5~25mm
NF-15
飲用水
Ⅱ級
19mm
配合比(kg/m3)
394
739
1063
7.56
178
26
0.8
3.3混凝土攪拌和澆搗
澆筑大厚板所用的杜拉纖維混凝土由南京長江二橋混凝土有限公司供給。兩臺2m3的攪拌臺負責攪拌杜拉纖維混凝土,攪拌時間為180s,杜拉纖維事先經過分裝(每袋1.6kg)由攪拌臺加料口直接加入攪拌機攪拌。
采用兩臺混凝土泵車從焦炭塔框架兩對角位置同時進行澆注。由于鋼筋數量太密,混凝土振搗困難,故采用四臺混凝土振動泵同時振搗,振搗時間不少于40s。杜拉纖維在混凝土中分散均勻,和易性比普通混凝土有很大提高,但混凝土的坍落度有所下降。這是因為杜拉纖維的總表面積很大,表面吸附水,因此纖維的加入會增加拌和料的粘稠度,降低坍落度。
金陵分公司160萬噸/年延遲焦化裝置已于2004年12月20日交付使用,12月30日出合格產品,連續生產三個多月后通過對大厚板的多次檢查,未發現明顯裂縫,達到了預期效果。
4杜拉纖維混凝土施工要點
(1)杜拉纖維的加入會增加拌和料的粘稠度,降低混凝土坍落度。如發現澆筑困難,一般不應通過增加用水量來改善混凝土性能,而應采用加入塑化劑或減水劑的方法。
(2)界面效應對杜拉纖維混凝土的性能有不利影響。雖然纖維-基材界面尺寸很小,但杜拉纖維細度高、比表面積大,即使纖維的摻量較低,也能在混凝土中獲得很大的纖維-基材界面。由于杜拉纖維不親水,纖維—基材界面往往具有比基材更高的水灰比,這將造成纖維-基材呈弱界面效應,對混凝土強度不利。應在混凝土中加入粉煤灰等活性混合材料改善纖維混凝土的界面性能。
(3)杜拉纖維在使用前應按照纖維的加入量和混凝土攪拌機的容量,事先進行分裝,以保證纖維加入量的準確。在砂、石、水泥和水等混凝土材料攪拌均勻后,從攪拌臺加料口直接加入杜拉纖維,并適當延長攪拌時間(1~2min)。切不可將杜拉纖維直接放入混凝土運輸車內,以免影響纖維在混凝土中的分散。
一、前言
隨著城市建設的發展與建筑技術的進步,大跨度超高層建筑已經成為建筑結構發展的主要方向之一。而由混凝土包裹鋼骨做成的鋼骨混凝土結構(SRC),充分發揮了鋼與混凝土兩種材料的特點,與鋼筋混凝土結構相比,具有剛度大,延性好,節省鋼材的優點。因此,鋼骨混凝土結構在我國有著廣闊的應用前景。
鋼骨混凝土結構的研究和應用在國外開始較早,我國因國情的限制,起步較晚,工程應用就更少,直到1997年11月才由冶金工業部正式了有關規程,并于1998年5月1日起施行。
深圳世貿中心大廈在關鍵部位應用了鋼骨混凝土結構,解決了用普通鋼筋混凝土結構不能解決的難題,收到了良好的效果。
二、工程概況
深圳世貿中心大廈于1996年設計,是一幢集金融、貿易、商業、辦公于一體的綜合性超高層建筑,總建筑面積12萬平米。主樓地上52層,地下3層,標準層層高4m,總高230m,采用鋼骨混凝土框架-筒體結構。裙房5層,層高5m,總高25m,采用框架-剪力墻結構。主樓與裙房之間未設變形縫,施工時留有施工后澆帶。基礎采用大直徑人工挖孔樁基礎最大直徑2.9m。
根據建筑功能及使用要求,裙房首層及二層由大廳組成,為大空間;三層為銀行辦公室,中間部分設一圓形天井;四層設有外匯交易大廳;五層為大會議室;
三、結構布置
為了滿足建筑功能及使用要求,需要選擇一個受力合理、安全可靠、施工方便的結構方案。由于裙房首層及二層共有6根柱子不能落下,形成了長達25.8m跨的大空間,結構平面采用了井字梁的結構形式。但關鍵問題是25.8m跨框架大梁采用何種結構型式,并且建筑要求三層框架梁截面高度不超過1m。
方案1:采用普通鋼筋混凝土大梁,這種方案梁斷面較大,框架梁截面高度需2m以上,不滿足建筑功能及使用要求,此方案不可行。
方案2:采用無粘結預應力混凝土大梁,這種無粘結預應力梁本身截面及用鋼量均不太大即可滿足結構設計要求,但由于三層梁高1m的限制,梁高跨比達到1/25,此方案也不宜采用。
方案3:采用鋼骨混凝土大梁,利用大梁中部抗拉柱,按變形協調計算。梁截面比普通鋼筋混凝土減小很多,平面和空間利用率都相應提高,又采用由四、五層大梁吊三層梁的懸掛形式,三層框架梁高度為1m,可以滿足建筑使用要求。該方案克服了上述二個方案的不足之處,且施工方便,合理可行。經方案比較,優點較突出,雖然增加了用鋼量,但因梁截面減小,增加了空間使用面積,抗震能力也大大提高。因此,本工程裙房25.8m大梁采用鋼骨混凝土方案。為了保證大梁與柱的固結,與之相接的柱也采用了鋼骨混凝土結構形式。
四、鋼骨混凝土梁的計算
結構整體計算采用中國建筑科學研究院軟件TBSA4.2計算,再采用軟件PK對框架梁進行復核。由于本工程在設計時,國內尚未正式出版有關SRC組合結構構件設計規程,針對鋼骨混凝土梁的計算,當時有二種計算模型,一種是強度疊加模型,另一種為變形協調模型。下面結合世貿大廈裙房25.8m大梁,分別用兩種模型進行計算。
⒈強度疊加模型
假定SRC構件的承載力是鋼骨部分與鋼筋混凝土部分的承載力之和,鋼骨與鋼筋混凝土部分的變形彼此獨立。這種方法具有計算簡單,應用靈活的特點,其設計是偏于安全的。日本的計算標準就采用了此模型,SRC計算方法也是基于這種模型。現SRC梁進行計算,公式如下:
鋼骨混凝土梁受彎承載力:M≤Mc+Ms(1)
式中Mc---鋼筋混凝土部分受彎承載力,按設計
Ms---鋼骨部分的受彎承載力,Ms=γWnf(2)
γ---截面塑性發展系數,Mn---截面凈截面抵抗矩,f---型鋼材料強度設計值
鋼骨混凝土梁受剪承載力:V≤Vc+Vs(3)
式中Vc---鋼筋混凝土部分受剪承載力,按設計
Vs---鋼骨部分的受剪承載力,Vs=2/3Aswfv(4)
Asw---鋼骨腹板部分凈截面積,fv---鋼材抗剪強度設計值
鋼骨混凝土梁的剛度:B=0.65EcIc+EsIs(5)
式中EcIc---鋼筋混凝土的剛度,EsIs---鋼骨的剛度
由于該模型公式簡化,計算簡單,故在設計中可先按該模型公式,確定構件截面、鋼骨截面及鋼筋數量。世貿大廈裙房25.8m跨大梁混凝土及鋼骨截面。
彎距設計值為M=19237kN-m,剪力設計值為V=2467kN,混凝土強度等級C40,鋼骨為16Mn。
按公式(2):Ms=γWnf=1x4.15x107x315=13100kN-m
按公式(1):Mc≥M-Ms=19237-13100=6137kN-m
再按,Mu=fmcbx(h0-x/2)(矩形截面)
將已知條件代入,得x=170mm,xb=ξbh0=0.55x1765=970mm
選用12Φ36
按公式(4):Vs=2/3Aswfv=2/3x55200x170=6256kN
故V=2467kN<>
按公式(5):B=0.65EcIc+EsIs=1.88x1016Nmm2
撓度:fmax=5ql4/384B+(5n4-4n2-1)Pl/384n3B
=72mm<25800/300=86mm(滿足)
SRC計算方法也是基于這種模型,且計算公式也基本相同,除鋼骨部分受剪承載力Vs=Aswfv,與有所差異外,其它部分均一致。
2.變形協調模型
沿用鋼筋混凝土構件計算中常用的鋼筋與混凝土變形協調一致的假定,即鋼骨與混凝土之間始終沒有相對滑移,構件截面始終保持為平面,鋼骨與混凝土能夠共同工作。其優點是從力學概念上保持了與鋼筋混凝土構件的一致性,主要問題是計算公式過于復雜。前蘇聯規范就采用了此模型,SRC結構計算也是基于這種模型。由于計算公式較復雜,故在世貿大廈裙房鋼骨混凝土大梁設計中,先按強度疊加模型計算截面及配筋,然后再用變形協調模型進行復核。
按第二種情況,中和軸經過鋼骨腹板,其截面受壓區高度按公式(6)計算:
x=[1.8fayνδw+fsyAs-fsy’As’+fcm(As’+Assf’-δw)]/[fcm(b-δw)+2.25fayδw](6)
將ν=900mm,δw=40mm,fsy=fsy’=310N/mm2,Assf’=3x104mm2,fay=315N/mm2,fcm=23.5N/mm2,
代入得:x=401mm,x<(適筋截面)>
正截面承載力按公式(7)計算:
M=fcmbx2/2+fsyAs(h-x-a)+(fsy’-fcm)As’(x-a’)+0.9fay[+(ν-x)2δw]-fcm(x-)[Assf’+(x-)δw/2](7)
式中---為鋼骨塑性抵抗距,=1.17ω=1.17x4.15x107=4.86x107mm3
將各數值代入(7)式得:M=24370kNm>19237kNm(滿足)
抗剪承載力按公式(8)計算:V=0.056fcbh0+0.58fywδwhw+fyvAsv/sh0(8)
抗剪承載力與變形經計算,均滿足要求,過程不再贅述。
五、設計體會
現行規程中梁正截面受彎承載力及斜截面受剪承載力計算均采用強度疊加模型,公式及含義也基本相同。區別是規程中鋼骨部分的受剪承載力是按純鋼構件腹板受純剪情況計算的,不考慮局部壓屈影響,要求放寬。故當計算滿足時,也能滿足現行規程。
鋼骨混凝土構件中的鋼骨另由含鋼率控制,不受鋼筋配筋率的影響,使得有與普通混凝土構件同樣的外形尺寸,但其承載力提高很多。同樣,在承載力相同的情況下,鋼骨混凝土構件的外形尺寸可以相應減小,減輕了結構自重,減小了混凝土用量,利用鋼骨本身承載力大的優點,可以節約支模所設的支撐,節省材料。在大跨度,大荷載作用下,鋼骨混凝土梁截面尺寸由變形控制。
中和軸通過鋼骨腹板的鋼骨混凝土構件,在其喪失最大承載力后,由于在其中和軸附近的鋼骨腹板仍處于彈性工作狀態,所以仍能保持較大承載力,使構件本身并不崩潰,顯示出較好的變形能力和抗震性能。
澆注混凝土直至澆注完畢,因為大量的水化熱會在水化時產生,剛開始時會因為混凝土聚集大量水化熱,因而內部熱量不易揮發,進而造成混凝土中內外溫差過大,同時在混凝土的內部產生強烈的拉應力,導致拉應力比此齡期的混凝土容許拉應力大很多時,會形成溫度裂縫。另外,再加上通常大體積的混凝土配置鋼筋沒有深入到內部,因而由混凝土承擔因過大的內外溫差產生的拉應力,導致更容易產生溫度裂縫。
1.2混凝土收縮
然而伴隨著初期大量水熱化混凝土的漸漸消失,混凝土在后期會逐漸蒸發內部自由水,在外力不影響的條件下,混凝土會伴隨著硬結而自發的形成收縮和變形,但是,當這種收縮變形產生時會因為內部鋼筋的影響而受限,進而大量的拉應力會產生在混凝土當中,如果混凝土承擔不了該拉應力時,就會產生溫度裂縫。
1.3溫度突變
在土木工程中,待澆注完畢主梁,因為太陽會暴曬主梁的側面,所以這部分的混凝土的溫度顯然比其他地方的要高,進而造成內部溫度上升呈現非線性,使得主梁因為自己的限制產生過大的局部拉應力,進而因此產生溫度裂縫;除此之外,因為暴雨、陣雨以及冷空氣等氣候變化原因,澆注完畢的混凝土表面溫度會驟降,進而導致內外溫度形成梯形,如果溫度應力達到一定的高溫,就會產生溫度裂縫。
2土木工程大體積混凝土結構施工技術分析
2.1設計優化
在設計土木工程的時候,必須結合工程當地的氣候情況正確選擇混凝土配合比,而且還要布置適量的溫度鋼筋在易產生溫度裂縫的地方,以此和拉應力抗衡,與此同時,選擇在規定范圍內厚度最小的鋼筋保護層,防止由于過大厚度保護層而產生的溫度裂縫;除此之外,在劃分大體積混凝土的過程中,必須利用后澆帶和伸縮縫的正確設置來進行規則的分隔,同時還要根據科學設計的混凝土結構形狀,擴大混凝土水化熱的散熱范圍,進而防止加快增加其內部溫度,進而分散應力,減小產生溫度裂縫的可能性;而且,還要最大限度使用二次澆注的方法設計和施工混凝土,而且,在進行二次澆注的過程中為了增加混凝土抗拉能力,必須在其中添加聚丙烯纖維網或者鋼筋網。
2.2材料控制
大體積的混凝土之會有溫度裂縫產生,原因在于混凝土釋放大量的水化熱,因此,盡可能使用水熱化程度較低的水泥在大體積的混凝土當中,為了最大限度使用較少用量的水泥,還可以利用摻合料的方式,比如可以添加一些粉煤灰等。就混凝土的粗骨料的選擇而言,盡可能使用級配良好、強度高和粒徑大的粗骨料,可以有效防止混凝土產生收縮變形的現象,與此同時,也不會忽視含泥量和其他有害物質的含量的控制。而在混凝土的細骨料的選擇上,就必須符合泵送的要求,盡可能使用細砂或者中砂,這樣可以保證以最小的表面積和空隙率充分減少使用水泥的用量。除此之外,為了更好地增加同齡期混凝土的抗拉能力,還可以采用摻加外加劑的方式進行,有效提高了混凝土的和易性,減少水灰配比。
2.3施工控制
在實際施工混凝土澆注時,試驗人員的職責是根據現場的情況,及時跟蹤坍落度和和易性變化現象并隨時測量,根據結果上報攪拌站并及時進行處理。對于混凝土搗固人員來說,要經過嚴格的培訓,考核通過之后才能夠上崗,并且要權責明晰,分工明確,特別是要由專職人員搗鼓和處理鋼筋集中的地方、端模、拐(死)角等,技術人員和施工員要跟班指揮現場。通過插入式的為主要方式進行混凝土振搗,插入振搗最佳厚度為30cm,以垂直等距離插入到下層間距在60cm以內,高度大約為5~10cm。施工人員必須邊振搗邊觀察,盡可能避免漏振或過振等現象。
2.4冷卻管降溫
利用提前鋪冷卻管路在混凝土結構內部中,以此降低在硬化時混凝土內部的溫度,保證腳注混凝土完畢后通水循環冷卻的正常實施,冷卻管路中的水量的范圍不能超過1.5m3/h,如果管內為過高水溫,那么也會加快水流的速度和流量。施工的部位不能因為冷卻管的出水而受到影響,如果混凝土總體初步凝固,那么可以酌情通過該出水進行保溫養護。待混凝土養護的步驟結束,為保證混凝土的強度以及其他不受中空的冷卻管的影響,所以下一步一般利用真空壓漿的方式完成注漿和壓漿的工作。
引言
由于陳家貢灣特大橋處于海水環境,海水環境對于橋梁混凝土結構具有強腐蝕性,按照一級公路橋梁結構100年設計基準期和本工程使用年限的要求進行結構耐久性設計,為保證陳家貢灣特大橋混凝土結構的耐久性,本工程采取了以高性能混凝土技術為核心的綜合耐久性技術方案。然而我國目前尚沒有大型海洋工程超長壽命服役的相關技術規范,高性能混凝土的設計、生產、施工技術在工程中的應用尚為空白,因此結合陳家貢灣特大橋工程的具體要求,研究跨海大橋混凝土結構耐久性策略和高性能混凝土的應用技術極為迫切和重要。
1陳家貢灣特大橋混凝土結構布置和耐久性設計
1.1陳家貢灣特大橋混凝土結構布置陳家貢灣特大橋孔數—孔徑(孔—米)為60—30m,為裝配式預應力混凝土連續T梁橋,橋梁上部結構:六孔一聯、全橋共十聯,行車道板與橋面鋪裝采用剪力鋼筋連接;橋梁下部結構:橋墩采用雙懸臂預應力薄壁墩,墩柱為主截面3×1.5米的帶豎肋矩形截面,基礎采用柱式臺、樁基礎或重力臺、擴大基礎。混凝土設計強度根據不同部位在C35~C50之間。
1.2陳家貢灣特大橋附近海域氣象環境陳家貢灣特大橋地處東亞季風比較發達的黃海之濱,受季風和海洋氣候的影響,四季變化比較明顯,屬南溫帶濕潤季風氣候類型:夏季空氣濕潤,雨量充沛;冬季氣候干燥,時長稍寒。多年年平均最低氣溫為9.1℃、最高氣溫為15.9℃。最熱出現在八月,月平均氣溫為25℃,最冷出現在一月,月平均氣溫為-4.5℃。年平均相對濕度為72%,累年全年蒸發量平均為1462.2毫米,其中全年以五月份為最高,累年平均達到180.1毫米,一月最小,僅為54.8毫米,海區全年鹽度一般在15.00~34.00‰之間變化,屬強混合型海區,海洋環境特征明顯。
1.3陳家貢灣特大橋面臨的耐久性問題在海洋環境下結構混凝土的腐蝕荷載主要由氣候和環境介質侵蝕引起,主要表現形式有鋼筋銹蝕、鹽類侵蝕、凍融循環、溶蝕、堿-集料反應和沖擊磨損等。陳家貢灣特大橋位于東亞季風比較發達的黃海之濱,因為天氣較暖,嚴重的凍融破環和浮冰的沖擊磨損可不予考慮;鎂鹽、硫酸鹽等鹽類侵蝕和堿骨料反應破壞則可以通過控制混凝土組分來避免;這樣鋼筋銹蝕破壞就成為最主要的腐蝕荷載。混凝土中鋼筋銹蝕可由兩種因素誘發:一是海水中Cl-侵蝕,二是大氣中的CO2使混凝土碳化。國內外大量工程調查和科學研究結果表明:海洋環境下導致混凝土結構中鋼筋銹蝕破壞的主要因素是Cl-進入混凝土中,并在鋼筋表面集聚,促使鋼筋產生電化學腐蝕。在陳家貢灣特大橋周邊沿海地區調查中亦證實,海洋環境中混凝土的碳化速度遠遠低于Cl-滲透速度,混凝土自然碳化速度平均為3mm/10年。因此,影響陳家貢灣特大橋結構混凝土耐久性的首要因素是混凝土的Cl-滲透速度。
2提高海工混凝土耐久性的技術措施
提高海工耐久性混凝土的主要技術措施有:
2.1海工耐久性混凝土其技術途徑是采用優質混凝土礦物摻和料和聚羧酸高效減水劑復合,配以與之相適應的水泥和級配良好的粗細骨料,形成低水膠比,高密實、高耐久的混凝土材料。
2.2提高混凝土保護層厚度這是提高海洋工程鋼筋混凝土使用壽命的最為直接、簡單而且經濟有效的方法。但是保護層厚度并不能不受限制的任意增加,當混凝土保護層過薄時,易形成裂縫等缺陷使保護層失去作用,鋼筋過早銹蝕,降低結構強度和延性;當保護層厚度過厚時,由于混凝土材料本身的脆性和收縮會導致混凝土保護層出現裂縫反而削弱其對鋼筋的保護作用。
2.3混凝土保護涂層完好的混凝土保護涂層具有阻絕腐蝕性介質與混凝土接觸粘結的特點,其于砼粘結力不小于1.5Mpa,并且與砼表面的強堿性相適應,延長混凝土和鋼筋混凝土的使用壽命。然而大部分涂層本身會在環境的作用下老化,逐漸喪失其功效,一般壽命在5~10年,只能作輔助措施。
2.4阻銹劑阻銹劑通過提高氯離子促使鋼筋腐蝕的臨界濃度來穩定鋼筋表面的氧化物保護膜,其品質對混凝土的主要物理性能、力學性能無不利影響,從而延長鋼筋混凝土的使用壽命。但由于其有效用量較大,作為輔助措施較為適宜。
3加強陳家貢灣特大橋結構混凝土耐久性措施
改善混凝土和鋼筋混凝土結構耐久性需采取的措施:①從材質本身的性能出發,提高混凝土材料本身的耐久性能,例如采用高效減水劑和高效活性礦物摻合料。②找出破壞混凝土耐久性作用的內在因素和外在因素,對主因和次因對癥施治,并根據具體情況采取除高性能混凝土以外的補充措施,例如綜合防腐措施。采用高性能混凝土是在惡劣的海洋環境下提高結構耐久性的基本措施,然后根據不同構件和部位,盡可能提高鋼筋保護層厚度(一般不小于50mm),某些部位還可復合采用保護涂層或阻銹劑等輔助措施,形成以高性能海工混凝土為基礎的綜合防護策略,有效提高陳家貢灣特大橋混凝土結構的使用壽命。
因此,陳家貢灣特大橋混凝土結構的耐久性基本方案是:首先,混凝土結構耐久性基本措施是采用高性能混凝土,同時依據混凝土構件所處結構部位及使用環境條件,采用必要的補充防腐措施,如摻加鋼筋阻銹劑、混凝土外涂保護層等。在保證施工質量和原材料品質的前提下,混凝土結構的耐久性將可以達到設計要求。
對于具體工程而言,耐久性方案的設計必須考慮當地的實際情況,如原材料的耐久性指標、工藝設備的可行性等,以及混凝土配合比經濟上的合理性。也就是說應該采取有針對性的,因地制宜的制定防腐方案。
根據設計院提出的陳家貢灣特大橋主要部位構件的強度等級要求、構件的施工工藝和環境條件,對各部位混凝土結構提出具體的耐久性方案。
4陳家貢灣特大橋高性能混凝土原材料耐久性
4.1試驗用原材料及其物理化學性能
4.1.1水泥試驗中采用了P.Ⅱ52.5,有關性能參數見下表。
4.1.2高爐磨細礦渣(S95)
高爐磨細礦渣(S95)的有關性能參數見表
4.1.3硅粉
硅粉的有關性能參數見表
4.1.4粗骨料
混凝土配制試驗用石為5~25mm連續級配碎石。
4.1.5細骨料
混凝土配制試驗用砂檢驗結果如表
4.1.6減水劑
試驗采用HSN-A聚羧酸高性能混凝土減水劑。
4.1.7拌和用水飲用水。
4.2試驗方案和主要試驗方法從高性能海工混凝土的基本要求出發,在原材料的優選試驗中,以混凝土的坍落度和擴展度評價混凝土的工作性,以抗壓強度等評價混凝土的物理力學性能,以混凝土的電通量和氯離子擴散系數(自然擴散法)試驗結果評價混凝土的抗氯離子滲透性能,并以耐久性能為首要要求。
試驗中所采用的主要試驗方法有:
4.2.1坍落度、擴展度混凝土的坍落度、擴展度按《新拌混凝土性能試驗方法》GBJ80-85測定。
4.2.2抗壓強度混凝土的抗壓強度按《普通混凝土力學性能試驗方法》GBJ81-85測定。
4.2.3混凝土的抗凍性能試驗參照《普通混凝土長期性能和耐久性能試驗方法》(GBJ82-85)進行。
4.2.4混凝土的電通量和氯離子擴散系數快速試驗NEL-PER型混凝土電通量測定儀來評價混凝土抵抗氯離子滲透能力的標準。試驗儀器采用北京耐爾NEL-PER型混凝土電通量測定儀。通過在¢95×50mm的混凝土試樣兩端施加60V的直流電壓,通過檢測6hrs內流過的電量大小來評價混凝土的滲透性。
用RCM-DH型氯離子擴散系數測定儀測定混凝土氯離子擴散系數的試驗方法,RCM法參照DuraCrete非靜態電遷移原理制定,定量評價混凝土抵抗氯離子擴散的能力,本方法適用于骨料最大粒徑不大于25mm的試驗室制作的或者從實體結構取芯獲得的混凝土試件。將標準養護28天的混凝土試件浸泡于質量濃度為3.0%的NaCl溶液中至指定齡期后,用混凝土切割機將混凝土試件切割成直徑=100±1mm,高=50±2mm的試件。將試件放入電解槽的夾具中,注入1L0.2mol/LKOH正極溶液與1L含5%NaCl的0.2mol/LKOH負極溶液,用測試機主機電源進行電遷移過程,劈開試件,用0.1mol/LAgNo3溶液測定顯色深度,最后用軟件計算混凝土試件的氯離子擴散系數。
4.3混凝土配合比設計試驗主要研究C40和C50高性能海工混凝土的性能
4.4高性能混凝土性能試驗結果及分析混凝土的物理力學性能試驗結果,常規耐久性能試驗結果
高性能海工混凝土的氯離子擴散系數和抗凍性能
高性能海工混凝土與普通混凝土相比較,具有優良的工作性能、相近的物理力學性能和優異的耐久性能,尤其是其耐海水腐蝕性能,混凝土氯離子擴散系數可小于3.0~1.0E-12m2/s
5海工耐久性混凝土的質量保證措施
5.1影響海工耐久性混凝土質量的因素高性能海工耐久性混凝土一般通常具有較高的膠凝材料用量、低水膠比與摻入大量活性摻合料等配制特點,致使高性能混凝土的硬化特點與內部結構同傳統的普通混凝土相比具有很大的差異,隨之帶來了它的早期體積穩定性差、容易開裂等問題。而混凝土的裂縫正是在使用階段環境侵蝕性介質侵入的通道,進而削弱其耐久性。
5.2提高海工耐久性混凝土質量措施在試驗過程中發現,澆筑的混凝土由于陽光直射溫度較高產生溫差過大的現象,同時由于海灣地區海風比較強烈也容易造成混凝土表面失水過快,混凝土表面收縮較大而導致混凝土開裂。因此,在實際澆筑混凝土過程中,T梁或其它結構的混凝土澆注完畢后應立即在頂面和四周采取保溫保濕措施。對于T梁等大型預制構件,由于預制場地的限制和施工進度要求,采用低溫蒸養的方式。
混凝土在現代工程建設中占有重要的地位。而在今天,混凝土的裂縫在一些施工現場仍然時有出現。論文大全。論文大全。究其原因,我們對混凝土溫度應力的變化注意不夠是其中之一。我們遇到的主要是施工中的溫度裂縫,因此本文僅對施工中大體積混凝土裂縫的成因和處理措施做一探討。
1.大體積混凝土溫度控制措施
高層建筑地下室的底板一般較厚,有的厚達2-3m,屬大體積混凝土施工。發生裂縫的主要原因是水化熱高,與環境氣溫差大,或養護不當,裂縫嚴重的可導致底板滲漏,若混凝土溫度較高是突然澆冷水養護,也會產生無規則的多條微裂縫。
判斷能否出現溫度裂縫,溫度裂縫的控制,需進行溫度控制計算后采取相應措施加以控制。根據經驗和有關規定混凝土內外溫差不超過25度則不會產生溫度裂縫。該工程大部分混凝土在12月到次年2月澆筑,而這段時間正值全年氣溫最低,因此必須進行混凝土熱工計算和混凝土溫度控制,該部分混凝土的標號均為C20。
采取防止出現溫度裂縫的措施,計劃采取的措施為:混凝土初凝后在表面覆蓋一層塑料薄膜,并覆蓋兩層草袋進行隔熱保溫養護。
混凝土內部溫度監測,為了及時牚握混凝土內部溫升與表面溫度的變化值,在第一施工段內設一個測溫點,監測混凝土中心測點與表面測點的溫差值,作為調整養護措施的依據,防止混凝土出現溫度裂縫。
1.1大體積混凝土墎臺身或基礎等結構裂縫的發生是由多種因素引起
各類裂縫產生的主要影響因素有幾種:一是結構型裂縫,是由外荷載引起的,包括常規結構計算中主要應力以及其他的結構次應力造成的受力裂縫。二是材料型裂縫,是由非受力變形變化引起的,主要是由溫度應力和混凝土的收縮引起的。
1)收縮裂縫:限制條件下的收縮可分為自生收縮,塑性收縮,炭化收縮和干縮四種,在收縮變形超過極限延伸率或收縮產生的應力超過混凝土當時的抗拉強度時,就開始出現裂縫。
2)溫差裂縫:混凝土內外部溫差過大會產生裂縫。主要影響因素是水泥水化熱引起的混凝土內部和混凝土表面的溫差過大。特別是大體積混凝土更易發生此類裂縫。大體積混凝土結構一般要求一次性整體澆筑。澆筑后,水泥因水化引起水化熱,由于混凝土體積大,聚集在內部的水泥水化熱不易散發混凝土內部溫度將顯著升高,而其表面則散熱較快形成了較大的溫度差,使混凝土內部產生壓應力,表面產生拉應力。此時,混凝齡短,抗拉強度很低。當溫差產生的表面抗拉應力超過混凝土極限抗拉強度,則會在混凝土表面產生裂縫。
3)安定性裂縫;安定性裂縫表現為龜裂,主要是因水泥安定性不合格而引起的。
1.2溫度應力的分析
根據溫度應力的形成過程可分為以下三個階段:
(1)早期:自澆筑混凝土開始至水泥放熱基本結束,一般約30天。這個階段的兩個特征,一是水泥放出大量的水化熱,二是混凝土彈性模量的急劇變化。由于彈性模量的變化,這一時期在混凝土內形成殘余應力。
(2)中期:自水泥放熱作用基本結束時起至混凝土冷卻到穩定溫度時止,這個時期中,溫度應力主要是由于混凝土的冷卻及外界氣溫變化所引起,這些應力與早期形成的殘余應力相疊加,在此期間混凝土的彈性模量變化不大。
(3)晚期:混凝土完成冷卻以后的運轉時期。溫度應力主要是外界氣溫變化所引起,這些應力與前兩種的殘余應力相迭加。
2.裂縫的防治措施
2.1設計措施
1)精心設計混凝土配合比。在保證混凝土具有良好工作性的情況下,應盡可能地降低混凝土的單位用水量,采用“三低(低砂率、低坍落度、低水膠比)二摻(摻高效減水劑和高性能引氣劑)一高(高粉煤灰量)”的設計準則,生產出高強、高韌性、中彈、低熱和高極拉值的抗裂混凝土。
2)增配構造筋提高抗裂性能。配筋應采用小直徑、小間距。全截面的配筋率應在0.3-0.5%之間。
3)避免結構突變產生應力集中,在易產生應力集中的薄弱環節采取加強措施。
4)在易裂的邊緣部位設置暗梁,提高該部位的配筋率,提高混凝土的極限拉伸。
5)在結構設計中應充分考慮施工時的氣候特征,合理設置后澆縫,保留時間一般不小于60天。如不能預測施工時的具體條件,也可臨時根據具體情況作設計變更。
2.2施工措施
1)細致分析混凝土集料的配比,控制混凝土的水灰比,減少混凝土的坍落度,合理摻加塑化劑和減少劑。
2)根據工程特點,充分利用混凝土后期強度,可以減少用水量,減少水化熱和收縮。
3)混凝土盡可能晚拆模,拆模后混凝土表面溫度不應下降15゜C以上。論文大全。
4)采用兩次振搗技術,改善混凝土強度,提高抗裂性。
5)對于高強度混凝土,應盡量使用中熱微膨脹水泥,摻超細礦粉和膨脹劑,使用高效減水劑,使用高效減水劑。通過試驗摻入粉煤灰,摻量15%-50%。
2.3現場操作方面
1)澆搗工作:澆搗時澆搗棒要快插慢拔,根據不同的混凝土坍落度正確牚握振搗時間,避免過振和漏振,應提倡用二次振搗,二次抹面技術,以排除泌水,混凝土內部的水分和氣泡。
2)混凝土的養護:在混凝土裂縫的防治工作中,對新澆混凝土的早期養護工作尤為重要。以保證混凝土在早期盡可能少產生收縮。主要是控制好構件的濕潤養護,對于大體積混凝土,有條件時宜采用蓄水或流水養護。養護時間為14-28天。
3)避免在雨中或大風中澆灌混凝土,對于地下結構混凝土,盡早回填土,對減少裂縫有利。
4)夏季應注意混凝土的澆搗溫度,采用低溫人模,低溫養護,必要時經試驗可采用冰塊,以降低混凝土原材料的溫度。
內容:對于鋼筋混凝土框架結構的施工,有關規范雖已有詳細規定,但仍有一些具體細節問題沒有明確具體做法,對工程施工過程的管理造成一定影響。本文針對粱柱節點箍筋施工、鋼筋混凝土強度等級、保護層厚度等方面的常見問題,對鋼筋混凝土框架結構施工方法提出改進意見。
1 梁柱節點箍筋施工問題
在實際施工中,梁柱節點區鋼筋密集,構造復雜,特別是處于結構中間部位的梁柱接頭部位,梁柱鋼筋縱橫、垂直交錯,梁的縱向受力鋼筋要放在柱縱向鋼筋內部,呈井子形交叉,這樣柱子的箍筋綁扎就很不方便。在框架結構施工中,施工單位普遍采取先安裝梁底模,柱子箍筋先套在主筋上,再綁扎安裝梁鋼筋,那么節點區箍筋如果不能及時調位和正確綁扎,致使梁柱節點區出現箍筋不放、少放、間距不符合圖紙和規范要求,這樣就會給節點區質量留下安全隱患。
由于意識到這個問題對工程質量的影響,具體可采取以下措施:
第一,柱子箍筋下料時做成兩個U型的,肢長根據截面尺寸、搭接焊接焊縫要求統一考慮,在綁扎梁的縱向鋼筋時,柱子箍筋先不綁扎,待梁的主筋正確就位后再將制作好的兩個U型箍筋焊接,這樣就可以保證箍筋數量、位置滿足設計和規范要求。論文格式。
第二,在安裝梁鋼筋之前,先把梁鋼筋縱向鋼筋用墊塊準確就位后再進行綁扎,綁扎時控制好縱向主筋與箍筋先后擱置順序,確保接頭處箍筋鋼筋位置、數量、間距滿足要求。
以上兩種做法能有效保證箍筋的施工質量能滿足規范和圖紙要求,也進一步滿足結構中的強結點,強錨固的要求。論文格式。
2 梁柱節點處混凝土強度等級的問題
在鋼筋混凝土框架結構設計時,根據設計原則,為保證“強柱弱梁”“ 強節點,強錨固”的要求,柱的混凝土強度等級通常會比梁板高,而且隨著建筑物高度的增加,兩者的差距會更大。然而這樣的話,就會給施工中梁板與柱子交接處截面處混凝土強度等級、構件質量的控制帶來很大麻煩。論文格式。
在框架結構施工中,比較普遍的做法是柱和梁板混凝土分兩批集中澆筑,即節點區采取和梁板結構混凝土相同強度等級混凝土澆筑。如果單獨澆筑節點區,會存在因供應量少和與梁板分隔困難的問題,若同柱一起澆筑,會使節點區混凝土施工縫的留置很困難,如與梁板同時澆筑存在節點“夾層”,存在質量隱患。
根據規范規定,梁柱混凝土強度等級相差不宜大于5MPa,如果超過時,梁柱節點區施工時應作專門處理,使節點區混凝土強度等級與柱相同。特別強調節點核心區的混凝土強度等級要與柱相同,不能與梁板混凝土強度等級相同;而規范規定,當柱混凝土設計強度等級高于梁板的設計強度時,應該對梁柱節點核心區混凝土強度等級采取有效措施,保證節點混凝土的強度。兩個觀點都在保證強節點的設計原則。具體可采取以下措施:
為了方便施工,可以直接在梁端(柱邊)設置垂直交界面,采用快易收口網,可避免在板內設置分界面,使施工難度降低;但為防止分界面出現施工冷縫,建議施工時梁柱節點區混凝土采用塔吊配備小口漏斗澆筑,梁板等大面積部位混凝土則采用泵送,同時澆筑,并做好養護工作。
要保證核心區混凝土構件的強度,具體做法是在節點處增加縱向鋼筋,設置型鋼或增加箍筋予以補強。這種方法施工方便,質量容易保證,施工單位易接受。
3 混凝土保護層厚度問題
保護層厚度的規定是為滿足結構構件的耐久性要求、滿足混凝土炭化深度符合規范和對受力鋼筋有效錨固的要求。保護層厚度太小,無法滿足上述要求,太大則會在彎矩作用下使截面邊緣產生的拉應力而使構件表面易開裂(δ=M/W=My/I)。因此,《混凝土結構工程施工質量驗收規》(CB50204-2002)第5.5.2條均規定:受力鋼筋保護層厚度梁柱允許偏差為5mm。
施工時須嚴格按規范和設計要求保證混凝土保護層厚度,但實際施工時很難做到。高層建筑中。由于柱箍筋直徑較大,間距較密,肢數較多,加工難度較大,上下鋼筋有相互錨固,安裝后箍筋有外突部分,外突箍筋使模板無法安裝,為此施工單位總是有意識地將箍筋做小一點以便安裝模板。但會造成柱縱筋保護層偏大,解決該問題有賴于提高現場加工施工準確度,做好鋼筋工程施工樣板。 其次模板的幾何尺寸也是影響保護層的因素之一,幾何尺寸偏小,骨架尺寸不變,則會造成保護層偏小,反之則會偏大。還有梁的起拱、保護層墊塊多少也會造成保護層大小的改變。
在框架結構施工中,由于樓面結構標高是一致的。雙向框架梁同時穿越柱節點時,必然造成一側框架梁面筋保護層厚度偏大。井宇架梁節點也有同樣問題,這些問題無法避免,可以通過設計采用增加構造架立鋼筋解決。但需注意:一是梁箍筋的下料問題.由于一向框架梁面筋需從另一向框架梁面筋底下穿過,若該向框架梁端箍按原尺寸下料,面筋無法直接綁扎到箍筋上,對梁骨架受力不利,因此梁端箍筋下料時高度可減小2-3cm(僅一向框架梁端需要);二是施工時以哪一向為主,保護層厚度增大,混凝土截面有效高度變小,正截面抗彎承能力減小,設計時是否考慮這種影響,另一方面構件表面容易開裂(原因如上,δ=M/W=My/I),《混凝土結構設計規范》(GB50010-2002)第9.2.4條規定:當梁、柱中縱向受力鋼筋的保護層厚度大于40mm時,應對保護層采取有效的防裂構造措施;對此須在設計時就明確以哪一向為大,并對保護層厚度偏大的一向梁端加鋪一層鋼絲網以防表面開裂,也可以通過設計采用增加構造架立鋼筋解決。
[1]《混凝土結構設計規范》(GB 50010-2002)
[2]《混凝土結構施工圖平面整體表示方法制圖規則和構造詳圖》(03G101)
[3]《建筑結構抗震設計》,中國建筑工業出版社
[4] 《一級注冊結構工程師必備規范匯編》中國建筑工業出版社