時間:2023-03-17 18:12:02
導言:作為寫作愛好者,不可錯過為您精心挑選的10篇攝影測量技術論文,它們將為您的寫作提供全新的視角,我們衷心期待您的閱讀,并希望這些內容能為您提供靈感和參考。
中圖分類號: P228.4 文獻標識碼: A 文章編號:
一.引言。
工程測量通常是指在工程建設的勘測設計、施工和管理階段中運用的各種測量理論、方法和技術的總稱。傳統工程測量技術的服務領域包括建筑、水利、交通、礦山等部門,其基本內容有測圖和放樣兩部分。現代工程測量己經遠遠突破了僅僅為工程建設服務的概念,它不僅涉及工程的靜態、動態幾何與物理量測定,而且包括對測量結果的分析,甚至對物體發展變化的趨勢預報。
二.工程測量實施的階段性分析。
1.規劃設計階段。
主要是提供大比例尺地形圖。采用的方法主要有地面人工測圖和攝影測量成圖兩類。
(1). 地面人工測圖。是根據由總體到局部的原則,先在測區內建立平面和高程控制網點(見工程控制測量),然后根據控制點測繪地物、地貌。近年來,隨著電子速測儀和機助制圖系統的發展,可以應用多功能整體式或組合式的電子速測系統取得地物和地貌特征點的三維坐標數據,輸入制圖系統自動成圖。
(2). 攝影測量成圖。是對地面進行攝影,對像片加以判讀、量測和處理,以獲得所需資料。最先應用的是地面攝影測量,即在地面上用攝影經緯儀攝取測區的像片,據以成圖。后來發展為航空攝影測量,它已成為目前測繪地形圖的最主要、最有效方法。
近年來,隨著攝影器材和測圖儀器的改進,除了模擬測圖方式以外,發展了解析測圖方式,即利用立體坐標量測儀對像片量測進行解析處理,獲得地形的數據資料。解析測圖儀除了與一般模擬立體測圖儀一樣測圖外,還可進行區域網點加密和數字化測圖,獲得數字地圖。地面形態的數字表達稱為“數字地面模型”,它可用來解決工程設計中繪制斷面圖、計算土石方量等問題。
2.施工階段工程測量工作。
主要是按照設計和施工的要求,先建立施工控制網點,然后根據控制網點,在實地上以適當的精度放樣出建筑物與生產設備各部分的位置,作為施工和安裝的依據。放樣工作包括平面位置放樣和高程放樣。平面位置放樣通常采用極坐標法、直角坐標法以及交會法等。高程放樣通常是根據高程控制網點用水準測量方法進行。近年來,已在施工測量中應用了激光測量儀器,例如:激光準直儀、激光垂線儀、激光平面儀、激光經緯儀、激光水準儀等(見工程測量儀器)。這不僅提高了測量的精度和速度,而且有助于實現自動化。
3. 經營管理階段的工程測量工作。
主要是為了監視工程建筑物的現狀,保證安全運營所進行的建(構)筑物變形觀測。包括垂直位移(沉降)、水平位移、傾斜、撓曲,以及風振、日照等變形觀測項目,其特點是要求建立較高精度的變形觀測控制網和穩固的基準點。對于觀測的精度要求與所采用的方法,因各項工程的要求不同,差異較大。野外觀測工作完成以后,經過平差計算和初步整理,應用統計檢驗的方法來分析變形觀測成果的可靠性,應用回歸分析的方法探討變形的規律性。垂直位移(沉降)觀測,通常采用精密水準測量方法。使用液體靜力水準測量法,可將液面的高程變化轉換成電感輸出,有利于實現觀測自動化。建筑物的水平位移觀測,由于它本身受力條件的不同,位移的方向不同,觀測方法也就不同。對于任意方向的位移觀測,常采用角度前方交會法,對于發生在某一特定方向的位移觀測常采用基準線法。基準面的建立,可應用經緯儀的視線、拉緊的鋼絲或者激光束。觀測點相對于基準面的偏離值,可以用人工觀測,也可以利用光電傳感技術,實現自動化。建筑物的位移、傾斜、撓曲和瞬時變形觀測,除了采用大地測量方法外,也可以應用近景攝影測量技術。
三.工程測量技術的現狀。
1. 地面測量儀器。
20 世紀 80 年代以來出現許多先進的地面測量儀器,為工程測量提供了先進的技術工具和手段,如:光電測距儀、精密測距儀、電子經緯儀、全站儀、電子水準儀、數字水準儀、激光準直儀、激光掃平儀等,為工程測量向現代化、自動化、數字化方向發展創造了有利的條件,改變了傳統的工程控制網布網、地形測量、道路測量和施工測量等的作業方法。三角網已被三邊網、邊角網、測距導線網所替代;光電測距三角高程測量代替三、四等水準測量;具有自動跟蹤和連續顯示功能的測距儀用于施工放樣測量;無需棱鏡的測距儀解決了難以攀登和無法到達的測量點的測距工作;電子速測儀為細部測量提供了理想的儀器;精密測距儀的應用代替了傳統的基線丈量。
2.GPS定位技術。
GPS是美國從20世紀70年代開始研制,歷時20年,耗資200億美元,于1994年全面建成,具有海、陸、空進行全方位實施三維導航與定位能力的新一代衛星導航與定位系統。隨著GPS定位技術的不斷改進,軟、硬件的不斷完善,長期使用的測角、測距、測水準為主體的常規地面定位技術,正在逐步被以一次性確定三維坐標的高速度、高精度、費用省、操作簡單的GPS技術代替。
在我國 G P S 定位技術的應用已深入各個領域,國家大地網、城市控制網、工程控制網的建立與改造已普遍地應用 G P S 技術,在石油勘探、高速公路、通信線路、地下鐵路、隧道貫通、建筑變形、大壩監測、山體滑坡、地震的形變監測、海島或海域測量等也已廣泛的使用 G P S 技術。隨著D G P S 差分定位技術和 R T K 實時差分定位系統的發展和美國 A S 技術的解除,單點定位精度不斷提高,G P S 技術在導航、運載工具實時監控、石油物探點定位、地質勘查剖面測量、碎部點的測繪與放樣等領域將有廣泛的應用前景。
3. 數字化測繪技術。
數字化測繪技術在測繪工程領域得以廣泛應用,使大比例尺測圖技術向數字化、信息化發展。大比例尺地形圖和工程圖的測繪,歷來就是城市與工程測量的重要內容和任務。
常規的成圖方法是一項腦力勞動和體力勞動結合的艱苦的野外工作,同時還有大量的室內數據處理和繪圖工作,成圖周期長,產品單一,難以適應飛速發展的城市建設和現代化工程建設的需要。隨著電子經緯儀、全站儀的應用和 GEOMAP 系統的出現,把野外數據采集的先進設備與微機及數控繪圖儀三者結合起來,形成一個從野外或室內數據采集、數據處理、圖形編輯和繪圖的自動測圖系統。
4. 攝影測量技術。
攝影測量技術已越來越廣泛的在城市和工程測繪領域中得以應用,由于高質量、高精度的攝影測量儀器的研制生產,結合計算機技術中的應用,使得攝影測量能夠提供完全的、實時的三維空間信息。不僅不需要接觸物體,而且減少了外業工作量,具有測量高效、高精度,成果品種繁多等特點。在城市和工程大比例尺地形測繪、地籍測繪、公路、鐵路以及長距離通訊和電力選線、描述被測物體狀態、建筑物變形監測、文物保護和醫學上異物定位中都起到了一般測量難以起到的作用,具有廣泛的應用前景。由于全數字攝影測量工作站的出現,為攝影測量技術應用提供了新的技術手段和方法,該技術已在一些大中城市和大型工程勘察單位得以引進和應用。
六.結束語
在人類活動中,工程測量是無處不在、無時不用,只要有建設就必然存在工程測量,因而其發展和應用的前景是廣闊的。
參考文獻:
[1] 嚴召進 工程測量技術分析與探討. [期刊論文] 《中國新技術新產品》 -2010年2期
[2] 王麗君 GPS RTK測量關鍵技術分析及在遼陽某工業區測量案例研究 [期刊論文] 《科技資訊》 -2011年6期
[3] 涂興德. 土壩工程施工測量技術分析 [期刊論文] 《科技與生活》 -2010年16期
[4] 顏學華 張懷興 王本奎 全站儀測量技術分析及應用 [期刊論文] 《科技與企業》 -2012年21期
中圖分類號:TN141文獻標識碼: A 文章編號:
測量工作在礦山勘探、設計、開發和生產運營的各個階段起著重要的保障作用,隨著空間信息技術、數字信息技術和自動化、智能化技術的飛速發展,新型測繪儀器迅速出現與普及,使礦山測量在工作內容和技術方法等方面發生了深刻的變革。運用現代數字化測量技術進行礦山測量有助于提高礦山測量精度,降低測量工作勞動強度,提高礦山測量效率。
航空攝影測量技術在礦山測量中的應用已經歷了較長的時間,并積累了豐富的經驗,較之傳統的測圖方法,利用航空攝影測量技術成圖速度快、成本低、精度高,是一種應用極為廣泛的測圖方法。
精密單點定位技術的出現,為航空攝影提供了新的解決方案。目前國際服務組織所提供的精密星歷和精密鐘差的精度已經很高。隨著接收機性能的不斷改善,載波相位精度不斷提高,以及大氣改正模型和改正方法不斷深入,為精密單點定位技術應用航空攝影中提供了可能性。[1]
本文以礦區大小比例尺地形圖測繪生產為例,介紹了并進行基于精密單點定位的GPS/ POS輔助空中三角測量試驗,分析并比較了空中三角測量方法的加密精度,得出了基于精密單點定位的GPS/ POS輔助攝影進行大小比例尺航測成圖時新的像控布點、像控測量以及GPS/ POS輔助空中三角測量加密的方法。
1精密單點定位技術
精密單點定位(PPP-Precise Point Positioning)指得是利用載波相位觀測值以及IGS等組織提供的高精度的衛星星歷及衛星鐘差來進行高精度單點定位的方法。利用IGS提供的高精度的GPS精密衛星星歷和衛星鐘差,以及單臺雙頻GPS接收機采集的載波相位觀測值,采用非差模型進行精密單點定位。精密單點定位的優點在于在進行精密單點定位時,除能解算出測站坐標,同時解算出接收機鐘差、衛星鐘差、電離層和對流層延遲改正信息等參數,這些結果可以滿足不同層次用戶的需要(如研究授時、電離層、接收機鐘差、衛星鐘差及地球自轉等)。[1]
2GPS輔助空中三角測量的定義及方法
GPS輔助空中三角測量是利用GPS定位技術獲取航攝儀曝光時刻攝站的三維坐標,然后將GPS攝站坐標視為帶權觀測值與攝影測量數據進行聯合平差,確定目標點位,并評定其質量的理論、技術和方法。[4]
3IMU/DGPS輔助航空攝影測量定義及方法
IMU/DGPS輔助航空攝影測量是指利用裝在飛機上的GPS接收機和設在地面上的一個或多個基站上的GPS接收機同步而連續地觀測GPS衛星信號,通過GPS載波相位測量差分定位技術獲取航攝儀的位置參數,應用與航攝儀緊密固連的高精度慣性測量單元(IMU,Inertial Measurement Unit)直接測定航攝儀的姿態參數,通過IMU, DGPS數據的聯合后處理技術獲得測圖所需的每張像片高精度外方位元素的航空攝影測量理論、技術和方法。
將基于IMU/DGPS技術直接獲取的每張像片的外方位元素,作為帶權觀測值參與攝影測量區域網平差,獲得更高精度的像片外方位元素成果。這種方法即IMU/DGPS輔助空中三角測量方法(國際上稱Integrated Sensor Orientation,簡稱ISO)。[6]
4 試驗及其結果分析
本文就以兩個測區進行試驗,試驗1GSD為0.272m,相對航高為2000m,成圖比例尺為1:25000,試驗2 GSD為0.15m,相對航高為1100m,成圖比例尺為1:2000,以試驗在礦區基于精密單點定位技術的航空攝影測量方法成圖的應用。
4.1 試驗資料
試驗1為了滿足某礦區信息化管理的需求,為礦區決策、規劃、普查、資源整合、開發、資料申報及建立礦區全區域地形圖信息化管理數據庫系統提供基礎資料,某礦區實施全區域地形圖信息化管理數據庫系統-1:25000地形圖航測成圖工程。測區地處太行山南段與中條山北緣的結合部,地形復雜,地貌特征以山地為主。要保質保量的按時完成工程任務只有依靠科技創新,采用新技術,新方法和新裝備才能解決常規測繪技術無法解決的難題。
在本工程航空攝影、像片控制測量、空中三角測量和調繪等環節中均采用了新技術。航空攝影時采用了先進的SWDC數碼攝影系統;像片控制測量中同時采用了精密單點定位技術和似大地水準面模型兩項新技術;空中三角測量使用GPS輔助空中三角測量等。
試驗2為了保證某礦區更好的發展規劃和數字地形圖的現勢性,建設成數字化、生態型、工業旅游型中國煤炭工業品牌礦井,為生產建設提供科學、可靠的基礎數據,某礦區利用航測方法成1:2000地形圖測繪工程,本工程采用新技術POS航攝技術。
4.2試驗數據分析
為了分析利用精密單點定位技術進行GPS/POS輔助航空攝影測量方法所能達到的加密精度,通過試驗和數碼相機的固有優點,得出一些結論。圖1為試驗1的像控布點方案,圖2為試驗2的像控布點方案,表1列出了GPS/POS輔助空中三角測量精度統計表,表2列出了光束法區域網平差精度統計表。
圖1 試驗1布點方案
圖2 試驗2布點方案
表1 GPS/POS輔助空中三角測量精度統計表
表2 光束法區域網平差精度統計表
在GPS/POS輔助航空攝影時必須架設地面基準站,是需花費人力物力而且費時的工作,尤其是當測區范圍較大,在帶狀管線項目中需要設置多個基準站時,作業難度相當大。此次精密單點定位技術與數碼相機結合應用的成功探索,減少了航飛時基站布設的工作量。通過上述試驗說明,在GPS/POS輔助航空攝影測量中,可以無需布設地面基準站。GPS/POS輔助航空攝影按照常規航空攝影技術規程進行攝影作業是可行的。
從表1、表2可以看出, GPS輔助光束法區域網平差與自檢校光束法的結果是一致的。這表明,該測區的航攝資料是可用的,GPS攝站坐標的解算是正確的,利用該試驗區來進行GPS輔助光束法平差的精度分析是值得信賴的。
采用現行幾種航空攝影空中三角測量測量方法,加密點的精度均可滿足所處地
形相應比例尺航測內業加密的精度要求。試驗1、試驗2的精度均符合GB/T 7930-2008《1:500、1:1000、1:2000地形圖航空攝影測量內業規范》、GB/T 12340-2008《1:25000、1:50000、1:100000地形圖航空攝影測量內業規范》的規定。對于常規光束區域網平差來說精度主要取決于地面控制點的分布與間距,區域越大,所需的地面控制點越多,本次試驗1分別布設了69個地面控制點;對于小比例尺成圖GPS輔助空中三角測量測量而言只需在區域網的四角布設4個平高地面控制點,其不隨區域網的大小而變化。對于GPS輔助空中三角測量測量從表1可以看出,隨著地面控制點的減少,區域網平差的精度有所降低,當無地面控制點時尤為明顯。所以,要達到測量規范所要求的精度,必須采用合理的地面控制方案;對于POS輔助空中三角測量測量來說,布點方案須經實驗區確定,在試驗2測區共計600平方公里共布設39個像控點(包括檢測點),節省了80%的像控點,節約了60%的做像控費用。
由于精密單點定位所獲取的攝站坐標還不能完全達到空中三角測量所需要的控
制點的精度要求,區域網平差中利用地面控制點進行強制的系統誤差補償是必不可少的,從表1可看出無地面控制的檢查點的殘差帶有明顯的系統誤差。在區域的四角布設4個地面控制點被認為是一種可完全改正GPS系統漂移誤差的實用方法。實際作業中,在區域的四角布設4個平高控制點是必要的,它們可用于GPS單點定位誤差、WGS84系與國家統一坐標系不一致所引起的坐標變換誤差以及測定空間偏移分量誤差等系統誤差的改正。從表1成1::25000地形圖可以看出,未加入地面控制點時,GPS存在系統誤差;加入地面控制點后,進行了GPS漂移改正,平差解算結果精度得以明顯提高。[7]
本次試驗中像控點測量采用GPS精密單點定位(PPP)技術與利用高精度似大
地水準面模型進行GPS高程測量的方式施測。采用PPP技術僅使用單臺GPS接收機就可以精確確定點位位置,實現高精度定位導航的功能。單機作業,靈活機動,大大節約用戶成本,定位精度不受作用距離的限制。
5 結語
通過上述試驗可得出基于精密單點定位技術的GPS輔助及慣導航測技術在礦區成圖中使用可節約了傳統像片控制測量的作業成本,優化了傳統空中三角測量加密工序的技術流程,縮短了航測成圖周期,可高效、高質量的服務于礦區成圖。精密單點定位技術在航測成圖中的應用不僅改變了過去先航攝,接著外業象控測量,最后內業空中三角測量加密的工序流程,而且提高了精度,減少作業的工序提高了作業效率,并實現了無地面基站,為最終實現數字攝影測量的自動化生產奠定了堅實的基礎。
目前精密單點定位技術還處于研究實驗階段,在航空攝影測量中的應用才剛剛開始,相信隨著精密星歷與精密鐘差的進一步發展,精密單點定位算法進一步成熟化,將精密單點定位技術應用航空攝影中成為一種必然的趨勢。
參 考 文 獻
[1] 精密單點定位技術在輔助航空攝影中的應用研究[學位論文].中國地質大學碩士學位論文.
[2]王成龍等.基于SWDC的國家基礎航空攝影測量可行性研究[J]. 測繪工程,2009,18(1)
[3]袁路晴等.超輕型飛機搭載SWDC系列數字航攝儀的航空攝影測量一體化作業思路[J].鐵路勘察,2007,6.
[4] 袁修孝.GPS輔助空中三角測量原理及應用[M] .北京:測繪出版社,2001.
[5] 袁修孝.GPS輔助空中三角測量及其質量控制[D] .武漢大學博士論文,1999.
1.概論
傳統工程測量技術的服務領域主要包括水利、交通、建筑等行業,隨著計算機,網絡技術的發展、測量儀器的智能化,數字化測繪技術得到了廣泛的應用,而全球定位系統(GPS)、地理信息系統(GIS)、攝影測量與遙感(RS)以及數字化測繪和地面測量先進技術的發展,測量數據采集和處理的逐漸自動化、實時化和數字化,工程測量的服務領域也應進一步延伸,以滿足不斷提高的社會需要。
2.工程測量中的數字化技術
2.1地圖數字化技術
在建立各種GIS系統時,對原有地圖進行數字化處理,在建庫工作中占據了相當大的工作量,各工程測繪部門都投入相當大的人力和財力。對于已有紙制地圖,若其現勢性、精度和比例尺能滿足要求,就可以利用數字化儀將其輸入計算機,經編輯、修補后生成相應的數字地圖。當前有手扶跟蹤數字化和掃描矢量化兩大類儀器,針對大比例尺地形圖,大多數掃描矢量化軟件能自動提取多邊形信息,高效、便捷、保真的對地圖進行數字化處理。論文格式。
2.2數字化成圖手段
大比例尺地形圖和工程圖的測繪是傳統工程測量的重要內容,常規的成圖方法野外工作量大,作業艱苦,作業程序復雜,同時還有繁瑣的內業數據處理和繪圖工作,成圖周期長,產品單一,難以適應社會飛速發展的需要。論文格式。而數字化成圖技術具有精度高、勞動強度小、更新方便、便于保存管理及應用、易于等特點。目前,數字化成圖技術有內外業一體化和電子平板兩種模式。內外業一體化是一種外業數據采集方法,主要設備是全站儀、電子手簿等,其特點是精度高、內外業分工明確、便于人員分配,從而具有較高的成圖效率。論文格式。
3.數字測繪在數字地球中的應用
簡言之,數字地球就是把經濟和社會發展方方面面的信息,加載于一個統一的地理坐標框架中按數字的形式存貯于計算機,任何機構或個人均可通過網絡通訊技術,足不出戶便獲取所需的信息做到“秀才不出門,全知天下事”。數字地球是一個十分龐大的系統工程,技術復雜,涉及部門多,沒有任何一個部門或團體能單獨承擔,它需要地球科學、信息科學,空間技術才眾多應用部門的配合。測繪作為地學和信息學的重要組成部分,在國家空間數據基礎設施建設中具有不可替代的地位,空間基礎信息的獲取、處理,向信息高速公路提供內容豐富、形式多樣的信息貨物等工作已歷史地落在測繪工作者肩上。可以說,數字地球始于測繪。我國測繪部門從20世紀八十年代初期開始,對傳統測繪技術進行了大規模的數字化改造。傳統的光學定位技術已被光電技術,GPS技術所取代,傳統的白紙測圖已被數字測圖和地理信息系統所取代,以地面測量為主向以衛星定位(GPS)、衛星遙感(RS)測繪等高技術為主的對地觀測方面轉變,被動的靜態測量向動態的實時測量方面轉變測繪部門在數字地球基礎框架建設方面做了大量工作,主要包括:建立了全國A級、B級GPS網;完成了全國1:100萬、1:25萬基礎地理數據庫和數據服務設施;建立了國情和省情綜合地理信息系統,研制成功了從遙感立體影像自動建立數字地面模型的數字攝影測量系統;研制成功了數字高程模型(DEM)、數字正射影像(DOM)、數字線劃圖(DLG)、數字柵格圖(DRG)等“4D”產品生線。數字地球的雛形已經形成。
4.工程測量中的地理信息(GIS)技術
GIS是集計算機科學、空間科學信息科學、測繪遙感科學、環境科學和管理科學等學科為一體的新興學科。已成為多學科集成并應用于各領域的基礎平臺和地學空間信息顯示的基本手段與工具。其技術優勢不僅在于它的集地理數據采集存儲、管理、分析、三維可視化顯示與成果輸出于一體的數據流程,還在于它的空間提示、預測預報和輔助決策功能。目前,GIS不僅發展成為一門較為成熟的技術科學,而且已經成為一門新興的產業,在測繪、地質礦產、農林水利、氣象海洋、環境監測、城市規劃土地管理、區域開發與國防建設等領域發揮越來越重要的作用。采用GIS、數據庫、內外一體化測圖、掃描矢量化及全數字攝影測量等技術,為專業信息系統提供及時、準確、標準化、數字化的基礎空間信息,以建立各類專業信息系統,從而實現管理的科學化、標準化、信息化。
5.工程測量中的數字攝影測量技術
數字攝影測量是基于數字影像與攝影測量的基本原理,應用計算機技術、數字影像處理、影像匹配、模式識別等多學科的理論與方法。航空攝影測量是大面積、大比例尺地形測圖、地籍測量的重要手段與方法,可以提供數字的、影像的、線劃的等多種形式的地圖產品。全數字攝影工作站的出現,加上GPS技術在攝影測量中的應用,使得攝影測量向自動化、數字化方向邁進。隨著全數字攝影測量系統的應用,攝影測量產品已經從影像圖等向4D產品轉化,為建立各類專業的信息系統和基礎地理信息平臺提供了可靠的數據保證。
6.工程測量中的遙感( RS)技術
遙感(RS)技術由于大面積的同步觀測、時效性、數據的綜合性和可比性及經濟性等優勢,得到快速的普及,多光譜航空攝影和高分辨率的遙感衛星將成為對地觀測獲取基礎地理信息的重要手段。各種中小比例尺地形圖都可以利用遙感影像來獲取,為應用于工程測量領域的城市基本地形圖、地籍圖以及各種大、中、小比例地形圖的快速更新提供了十分便利的方法和手段。
7.工程測量中的3S集成技術
3S(GPS、GIS、RS)技術的結合,取長補短,是一個自然的發展趨勢,三者之間的相互作用行成了“一個大腦,兩只眼睛”的框架,即GPS與RS為GIS提供區域信息及空間定位信息,而GIS進行相應的空間分析以便從GPS和RS提供的海量數據中提取有用的信息并進行綜合集成,使之成為科學的決策依據。諸如三峽工程、南水北調工程、西氣東輸、青藏鐵路等工程,其施工范圍大、物流量大、施工周期長等,而3S技術為該類大型工程提供了最有效的數據及信息采集、分析處理、表達決策的工具。
8.結語
伴隨著測繪新技術的不斷進步,現代工程測量必將朝著測量內外作業一體化、數據獲取及處理自動化、測量過程控制和系統行為智能化、測量成果和產品數字化、測量信息管理可視化、信息共享和傳播網絡化的趨勢發展。
【參考文獻】
[1]陳俊勇,胡建國.GPS技術的新進展[J].測繪工程,1996,(2).
[2]李建松.地理信息系統原理[M].武漢:武漢大學出版社,2006.
近年來,伴隨著國民經濟建設的高速發展,高層建筑在形體和結構上顯得日益復雜,加之施工工藝不斷改進,這就對建筑物的變形監測提出了很多新的要求。由于高層建筑物有很多不利的監測環境,而施工工藝的改進又對形變監測工作提出了快速、高精度的要求,這些都讓傳統監測方法工作時顯得力不從心,所以利用新的技術手段和研究新的監測方法尤顯重要。GPS系統由衛星星座、接受機和地面控制站三大部分組成。作為20世紀一項高新技術,它因速度快、全天候、自動化、測站間無需通視、可同時測定點的三維坐標及精度高等優點,而獲得了廣泛應用。
1 GPS與傳統測定方法的比較
1.1傳統方法測定高層建筑動態變形的特點
在測定高層建筑變形量時,傳統的測定方法有加速度傳感器法、激光鉛直儀法、全站儀法、近景攝影測量技術等。論文寫作,GPS建筑變形。
加速度傳感器法所測得的位移誤差較大。激光鉛直儀法只能提供建筑物局部的、相對的變形信息,測量精度較低,易受氣候、風等因素影響。對較低的建筑物較為適用,對于高大建筑物(高度300 m以上),精度會受到較大的影響。全站儀法測定的是建筑物的絕對變形信息,可用于各類建筑物,但在惡劣氣候條件(如臺風、大雨等)下,因激光跟蹤目標困難,所以使用受到限制。近景攝影測量技術由于攝影距離不能過遠,大多數的測量部門不具備攝影測量所需的儀器設備,因此,尚不能普及應用。
所以不難看出,加速度傳感器法、激光鉛直儀法、全站儀法、近景攝影測量技術等觀測技術,在精確度、自動化程度等方面,已不能滿足高層建筑的動態監測要求。
1.2 GPS測定高層建筑動態變形的優勢
隨著軍用技術轉民用的限制逐漸降低和高速發展的硬件和軟件技術,GPS技術的優勢已經越來越明顯。
(1)可以全天候觀測。實時動態(簡稱RTK)測量技術是以載波相位觀測量為根據的實時差分GPS(RTD GPS)測量技術。可通過實時計算定位結果,便可監測基準站與用戶站觀測成果的質量和解算結果的收斂情況,從而可實時地判定解算結果是否成功。
(2)儀器精度高。GPS相對定位精度在50 km內達; 100~500 km達,1000km以上可達。且獨立布點不會有誤差積累,測量過程自動進行,不會有人為因素造成的錯誤,測量數據穩定可靠。
(3)自動化程度高。用GPS接收機進行測量時,僅需一人將天線準確地安置在測站上,量測天線高,接通電源,啟動接收機,儀器即自動開始工作。在結束測量時,只需關閉電源,收起接收機,便完成野外數據采集。
(4)可減少誤差。在變形監測中,只要天線在監測過程中能保持固定不動,接收機天線的對中誤差、整平誤差、定向誤差、量取天線高的誤差等并不會影響變形監測的結果。
(5) 操作方便。儀器體積小,重量輕,容易攜帶搬運,勞動強度小,外業工作量小。
(6)應用前景廣。GPS技術具有全球、無誤差積累等優點。使觀測工作效率大大提高,同時也節省了大量的人力和物力。
2GPS變形監測技術
2.1 GPS變形監測模式
GPS用于變形監測的作業模式可概括為周期性和連續性兩種。當變形體的變形速率相當緩慢,在局部時間域和空間域內可以認為穩定不動時,可利用GPS進行周期性變形監測,監測頻率可為數月、一年或甚至更長時間。連續性變形監測采用固定監測儀器進行長時間的數據采集,獲得變形數據系列,此時監測數據是連續的,具有較高的時間分辨率。周期性監測模式一般采用靜態相對定位測量方法。論文寫作,GPS建筑變形。連續性監測模式,適用于對自動化要求高,數據采集周期短的監測項目。在數據處理方法上,可選擇靜態相對定位和動態相對定位兩種方法。在一些高層建筑物等工程的動態監測中,可運用GPS連續監測模式。論文寫作,GPS建筑變形。該模式實現24小時的連續觀測,使監測、監控、決策實現遠距離控制,但該模式要求GPS接受設備必須永久固定在變形點上成本較高。
2.2 GPS在變形監測中的測量方法
按監測對象及要求不同,GPS在變形監測中可選擇靜態測量法,快速靜態測量法和動態測量法三種。
1)靜態測量法:靜態測量法,就是把多于3臺GPS接收機同時安置在觀測點上同步觀測一定時段,一般為1小時至2小時不等,用邊連接方法構網,用后處理軟件解算基線,經平差計算求定觀測點三維坐標。這種方法定位精度高,適用于長邊,測邊相對精度可達。論文寫作,GPS建筑變形。論文寫作,GPS建筑變形。
2)快速靜態測量法:這種方法尤其適用于對監測點的觀測。其工作原理是:把兩臺GPS接收機安置在基準點上固定不動連續觀測,另1~4臺接收機在監測點上移動,每次觀測5~10分鐘(采樣間隔為2秒),經事后處理,解算出各監測點的三維坐標。
3)動態測量法:該方法又分準動態測量方法和實時動態測量法。實時動態測量方法原理是:在基準站上安置一臺GPS接收機,對所有可見GPS衛星進行連續觀測,并將觀測數據通過無線電傳輸設備,實時地發送給在各監測點上移動觀測(1~3秒鐘)的GPS接收機,移動GPS接收機在接收GPS信號的同時,通過無線電接收設備基準的觀測數據,再根據差分定位原理,實時計算出監測點三維坐標及精度。
一般基準網應采用靜態測量方法,當基準網的邊長超過10 km,要考慮基準網的起算點與國際IGS站聯測,基線向量解算時采用精密星歷,保證基線解算的精度。對監測點進行測量時,可采用快速靜態測量法。在橋梁監測時,可選擇實時動態測量,如果距離近,基準點與監測點有5顆以上共視GPS衛星時,精度可達1~2 cm。
3 GPS測量數據處理
GPS數據處理過程可劃分為基線解算和網平差兩個階段。
GPS基準網的基線解算,應采用GAMIT或Bernese軟件和IGS精密星歷。平差計算應采用PowerADJ科研辦軟件。對高精度GPS的數據處理分為兩個主要方面:一是對GPS原始數據進行處理獲得同步觀測網的基線解;二是對各同步網進行整體平差和分析,獲得GPS網的整體解。這些軟件數據處理的重點都在于同步網的基線處理,而在網平差分析方面,特別是多個子網的系統誤差分析、粗差分析及隨機誤差處理方面,暫無好的處理方法。
4 結語
GPS這種全新的定位手段,在工程實踐中已逐步得到認同。目前,我國正處于經濟發展的歷史性的發展時期,各種基礎設施的大量建設,各種新材料、新技術的采用,使建筑工程這一傳統產業呈現勃勃生機。論文寫作,GPS建筑變形。隨著GPS技術的進一步開發,特別是有關高層建筑施工領域的應用技術包括基礎理論的研究、實踐方法的探索、信號接受手段的更新、信號處理方法和軟件的開發等的發展,再加上若干工程的應用、積累和提高,GPS技術將成為在高層及超高層建筑方面廣泛使用的方法。
參考文獻
[1]劉大杰等.全球定位系統GPS的原理與數據處理[M].上海:同濟大學出版社,2008:40-55.
[2]余紹銓等.GPS測量原理及應用[M].武漢:武漢測繪科技大學出版社,2007:60-65.
論文摘要:文章根據工作中的一些實踐,簡要介紹了數字化技術在原圖處理和攝影測量中的應用特點和一些要注意的方面,希望能給同行們作一些經驗參考。
傳統工程測量技術的服務領域主要包括水利、交通、建筑等行業,隨著計算機、網絡技術的發展、測量儀器的智能化,數字化測繪技術得到了廣泛的應用,而全球定位系統(GPS)、地理信息系統(GIS)、攝影測量與遙感(RS)以及數字化測繪和地面測量先進技術的發展,測量數據采集和處理的逐漸自動化、實時化和數字化,工程測量的服務領域也應進一步延伸,以滿足不斷提高的社會需要。
一、數字化技術在原圖處理中的應用
(一)原圖數字化處理
在建立各種GIS系統時,需要對原有地圖進行數字化處理,對于原始地圖,若其現勢性、精度和比例尺能滿足要求,就可以利用數字化儀對其進行數字化處理工作。當前主要有手扶跟蹤數字化和掃描矢量化、GPS數據輸入三種方法,手扶跟蹤數字化需要的儀器為計算機,數字化儀及相關軟件,是較早的一種數字化輸入方法,輸入速度較慢,勞動強度也較大。掃描矢量化是通過掃描儀輸入掃描圖像,然后通過矢量跟蹤,確定實體的空間位置。隨著掃描儀的普及和矢量化軟件的不斷升級,其作業方法越來越趨于自動化,它是一種省時,高效的數據輸入方法。GPS輸入是依據GPS工具能確定地球表面圖形精確位置,由于它測定的是三維空間位置的數字,因此不需作任何轉換,可直接輸入數據庫,目前主要是應用RTK(RealTimeKinematics-實時動態)技術,它是在GPS基礎上發展起來的、能夠實時提供流動站在指定坐標系中的三維定位結果,并在一定范圍內達到厘米級精度的一種新的GPS定位測量方式,通過將1臺GPS接收機安裝在已知點上對GPS衛星進行觀測,將采集的載波相位觀測量調制到基準站電臺的載波上,再通過基準站電臺發射出去;流動站在對GPS衛星進行觀測并采集載波相位觀測量的同時,也接收由基準站電臺發射的信號,經解調得到基準站的載波相位觀測量,流動站的GPS接收機再利用0TF(運動中求解整周模糊度)技術由基準站的載波相位觀測量和流動站的載波相位觀測量來求解整周模糊度,最后求出厘米級精度流動站的位置。應用這種測量方法測量可以不布設各級控制點,僅依據一定數量的基準控制點,便可以高精度快速地測定圖根控制點、界址點、地形點、地物點的坐標,利用測圖軟件可以在野外一次生成電子地圖。同時,也可以根據已有的數據成果快速地進行施工放樣。而實際應用得較多的主要是數字掃描矢量化軟件,針對大比例尺地形圖,大多數掃描矢量化軟件能自動提取多邊形信息,高效、便捷、保真的對地圖進行數字化處理。下面簡單介紹MAPCAD軟件的原圖數字化處理作業流程。
(二)數字化原圖作業流程
由于MAPCAD軟件掃描矢量化輸入方法具有圖像清晰、編輯方便、易于轉換等特點一般外設精度都能滿足,所以地形圖的精度主要取決于人工跟蹤精度和輸出設備精度,而人工跟蹤精度主要取決于作業人員的技能掌握熟練程度和工作態度,所以必須在加強作業人員基本技能培訓上下工夫,要求工作人員嚴格按矢量化方案作業,確保圖件的精度和質量高于國家現行數字化測圖規范所規定的數字化精度和質量。在工程測量實踐中,要做好地形圖外業測點與數字化圖縮放相結合、符號圖層的劃分子圖、線型符號庫的設計等工作保證滿足工程進度的同時又節約項目經費,設計出的數字地圖簡單易用、美觀整潔、易于使用地形圖的工作人員判讀。
二、數字化繪圖
(一)數字化繪圖的特點
大比例尺地形圖和工程圖的測繪是傳統工程測量的重要內容,數字化繪圖克服了手工繪圖存在的許多弊端,如工作量大,作業艱苦,作業程序復雜,煩瑣的內業數據處理和繪圖工作,成圖周期長,產品單一等缺點,符合現代飛速發展的工程需要。目前,數字化成圖技術主要有內外業一體化和電子平板兩種模式。內外業一體化是一種外業數據采集方法,主要設備是全站儀、電子手簿等,其特點是精度高、內外業分工明確、便于人員分配,從而具有較高的成圖效率。具有以下的特點:
1.一測多用:如在一些綜合性較強的工程中需要對同一地形圖繪制不同比例尺的地形圖,過去的平板測圖方法則需要重復工作,而數字化測圖則可以同時根據完成的地形圖繪制不同比例尺的多個地形圖,因為往往小比例尺包含了大比例尺地形圖測圖范圍。僅需先測大比例尺圖范圍,再補充小比例尺測圖范圍即可滿足各不同專業人員對不同比例尺的地形圖的需要。
2.精度高:數字化成圖系統在外業采集數據時,利用全站儀現場自動采集地形地物點的三維坐標,并自動存儲,在內業數據處理時,完全保持了外業測量的精度,消除了人為的錯誤及誤差來源,而且外業工作省略了讀數、計算、展點繪圖等外業工序,減少了作業人員,外業工效大大提高,時間縮短,直接生產成本大幅度下降。
3.勞動強度:小數字化成圖的過程,減輕了作業人員的勞動強度,使生產周期大大縮短,能及時滿足用戶的要求。
4.便于保存管理及更新方便:數字化產品既可以存儲在軟盤上,也可以通過繪圖儀繪在所需的圖紙上,線條、線劃粗細均勻,注記、字體工整,圖面整齊、美觀。且便于修改,能更好地保證圖形的現勢性和不變形性,避免重復測繪造成的浪費,增加地形圖的實用性和用戶的廣泛性。
(二)外業數據的采集
在采集數據時,數據采集人員要準確應用地物代碼,以免在內業成圖時出現錯誤;在觀測開始時,相關工作人員需嚴格按照要求應對測站點進行檢查,跑尺人員應嚴格按照自動成圖的要求作業,確保能完整地描述地形地貌的特征點,必須通過繪制草圖來表明各個地物碎部點的屬性及相互關系,測量坎子時,要量取坎子比高,坎下也要進行地形點采集。當一個測區完成后,如果有必要可把數據備份。
(三)繪制內業數據處理
無論是工程進程各階段的測量工作,還是不同工程的測量工作,都需要根據誤差分析和測量平差理論選擇適當的測量手段,并對測量成果進行處理和分析。
三、工程測量中的數字攝影測量技術
數字攝影測量是基于數字影像與攝影測量的基本原理,應用計算機技術、數字影像處理、影像匹配、模式識別等多學科的理論與方法。就攝影測量本身而言,從測繪的角度上來看數字攝影測量還是利用影像來進行測繪的科學與技術;而從信息科學和計算機視覺科學的角度來看,它是利用影像來重建三維表面模型的科學與技術,也就是在“室內”重建地形的三維表面模型,然后在模型上進行測繪,從本質上來說,它與原來的攝影測量沒有區別。因而,在數字攝影測量系統中,整個的生產流程與作業方式,和傳統的攝影測量差別似乎不大,但是它給傳統的攝影測量帶來了重大的變革。
根據高職教育培養高素質技能型人才的目標,高職攝影測量與遙感技術專業培養掌握攝影測量與遙感技術專業必需的基礎理論和基本技能,能夠從事攝影測量與遙感相關應用領域的高級技術應用性專門人才。近幾年來,針對高職院校攝影測量與遙感技術的人才培養方案和專業教學計劃也得到了一些教育學者們的研究。例如,[1]和[2]分別在對比了學科型專科與高職專科,本科與高職高專的區別的基礎上,提出了平衡理論與實踐教學的攝影測量與遙感技術專業人才培養模式與專業課程體系。[3]探討了高職攝影測量與遙感技術專業實訓教學課程開發的一些問題。國內開辦有攝影測量與遙感技術專業的幾所高職院校也各有側重設置了專業論文與實踐性課程[4-5]。這里與云南國土資源職業學院攝影測量與遙感技術專業為例,探討新時期攝影測量與遙感技術專業的課程體系設置,為其他學校相關專業課程體系的建設提供可借鑒的設計思路。
1 培養目標與就業面向
攝影測量與遙感技術專業面向資源勘查與測繪行業,培養德、智、體、美全面發展,具備良好的職業道德和科學文化素養,掌握必備的攝影測量與遙感理論、方法和技術基本知識,具有像片控制測量、像片調繪、空三加密、影像立體測圖、遙感數據處理、遙感數據解譯與分析等熟練的專業能力,能夠勝任航空攝影測量內業成圖、內業加密、外業調繪、外業控制測量、遙感數據處理與制圖等專業崗位的高技能應用型人才。學生畢業后,可在能在地質、城市、礦山、資源、環境、電力、水利、交通、農業、林業等領域從事4D數據產品生產、地理國情要素采集方面的專業技術及管理工作。
2 專業理論課程
經過專業定位與崗位群論證、對校企合作企業及其他相關企事業單位的進行調研,列出主要工作任務,確定典型工作任務,分析完成典型工作任務必須具備的職業能力,將行動領域轉化為學習領域,劃分出4門專業核心課程。
在已經開發出4門專業學習領域課程的基礎上,專業學習領域課程教師和專業基礎學習領域課程教師共同對所服務的典型工作任務進行匯總分析,找出共同需要的基礎能力和基礎知識。與更接近工作崗位真實工作任務的專業學習領域課程不同,專業基礎學習領域課程服務于鍛煉基礎能力、學習基礎知識的學習性任務。為此,設計了5門專業基礎課程。
3 專業實訓課程
除設置上述理實一體課程外,還設置了《攝影測量與控制測量綜合實訓》、《多源異構遙感數據處理綜合實訓》、《遙感圖像調繪與解譯綜合實習》、《頂崗實習》四門純實踐課程。
4 專業選修課
中圖分類號:P23 文獻標識碼:A 文章編號:1674-098X(2014)02(a)-0022-04
航空攝影測量技術是在飛機上利用航攝相機對地面連續攝取像片,結合地面控制點測量、處理和立體測繪等步驟,繪制出地形圖的作業,是我國獲取基礎地理信息數據的主要手段之一。目前,我國重大自然災害監測與預警、資源利用與環境監測等領域都需要大量的高分辨率、高精度的地理信息數據,這些數據與我國經濟的可持續發展緊緊相關。
航空攝影測量的基本原理就是利用航攝像片對每對同名像點的投影光線進行后方交會,獲得相應地面點的空間坐標。為了獲得正確的交會結果,必須確定攝影像片影像每一條投影光線在攝影時刻的空間位置與方向,而其空間位置與方向是由其航攝相機的內方位元素和外方位元素所決定的。內方位元素是指攝影中心與相片中心位置的三個參數,可以通過測試航攝相機來完成;外方位元素是指像點在攝影瞬間的空間三維位置與三維姿態六個運動參數,外方位元素則需要采用其它更復雜的技術途徑來解決。
傳統航空攝影測量一般需要使用野外控制點并通過空中三角測量加密求解外方位元素,而野外控制點的布設工作繁瑣,在荒漠、高山等困難地區野外控制點更是難以布設,因此,盡量減少乃至擺脫對野外控制點的依賴而直接對像片定向一直是攝影測量的重要研究方向之一。為此,人們一直試圖在航空攝影飛行過程中直接記錄或確定航攝相機的位置和方向,并利用這些定向數據實現航攝像片的絕對定向。
20世紀90年代,GPS(Global Position System,全球定位系統)輔助空中三角測量的方法得到了廣泛應用,利用GPS獲得的定位信息用來輔助空中三角測量,展現了導航技術在測繪領域的應用前景。GPS技術雖然解決了像片的定位問題,但是無法獲取像片的姿態參數,不能徹底擺脫地面控制。隨著航空攝影測量技術和慣性導航技術的發展,一種新的方法開始應用于航空攝影測量――定位定向系統(Position and Orientation System, 簡稱POS系統)輔助航空攝影。機載POS系統集GPS技術與慣性導航技術于一體,使準確地獲取航攝相機曝光時刻的外方位元素(GPS測量得到位置參數,慣性導航系統得到姿態參數)成為可能,從而實現了無(或少量)地面控制點,甚至無需空中三角測量加密工序,即可直接定向測圖,從而大大縮短航空攝影作業周期、提高生產效率、降低成本。因此,POS系統的出現,將從根本上改變傳統航空攝影的方法,進而引起航空攝影理論與技術的重大飛躍。隨著計算機技術的發展及其慣性、GPS器件精度水平的提高,POS無論定位定向精度還是實時數據處理能力都會有質的提高,將會在航空攝影測繪方面發揮越來越重要的作用。POS系統高精度定位定向技術是POS系統應用的關鍵技術,它的研究可以極大的推動POS系統的發展。
1 POS工作原理
IMU慣性測量單元最大優點是不依賴于任何外界信息,能夠進行完全自主的導航。慣性測量單元能夠連續長時間的工作,可以提供多種導航信息如位置、速度、航程、航向,還可以提供水平及方位基準,精度較高。但是,慣性測量單元的精度主要取決于慣性器件(陀螺儀和加速度計)的精度,并且其定位誤差隨時間積累,精度逐漸降低,這對于需要長時間工作的情況是極為不利的。而且其初始對準時間長,所以想到利用其它定位手段作為參考信息源,定期或不定期地對慣性測量單元進行綜合校正,對慣性器件的漂移進行補償。
GPS衛星導航系統具有定位精度高的特點,而且能夠進行全球、全天候、全天時、多維連續定位,其精度不隨時間變化。然而,GPS是非自主式的系統,不能提供諸如載體姿態等參數,運動載體上的GPS接收機不易捕獲和穩定跟蹤衛星信號,動態環境造成中信噪比下降。這些原因都容易產生周跳。而且由于GPS信號在傳播途中的干擾,使得系統定位精度有所下降,定位結果較為離散。
如上所述,GPS和IMU慣性測量單元各有所長,具有可互補的特點,兩者的組合不僅具有兩個獨立系統各自的主要優點,而且隨著組合水平的提高,它們之間信息傳遞、融合、使用的加強,組合系統的總體性能要遠優于任一獨立系統。
組合導航把無線電導航長期精度高與慣性測量短期精度高和不受干擾的優點結合起來,因而GPS與IMU的組合被認為是目前導航領域最理想的組合方式,其基本原理如圖1所示。POS都是采用這樣的組合系統,其優點主要表現在。
1.1 GPS/IMU組合提高了系統的精度
高精度GPS信息作為外部測量信息輸入系統,在運動過程中頻繁修正IMU測量值,以控制減弱其隨時間積累的誤差;而短時間內IMU定位結果可以很好的解決GPS動態環境中由于信號失鎖和周跳導致的精度跳躍下降問題。因而,GPS/IMU組合測量誤差實際上比單獨的GPS或IMU的誤差都小。
1.2 GPS/IMU組合加強系統的抗干擾能力
由于IMU可以獨立進行導航,因而當GPS信號受到干擾時,IMU不僅能提供導航信息,而且其導航解可作為輔助信息,對GPS碼和載波的再捕獲起輔助作用,大大縮短了GPS恢復工作的時間,提高了GPS接收機的跟蹤能力。而GPS信息對IMU的輔助可使IMU在運動中不斷進行初始對準。
1.3 GPS/IMU組合解決了GPS動態應用采樣頻率低的問題
由于GPS的數據采樣率低,不能達到某些動態應用中的要求,這時高頻IMU數據可以在GPS定位結果之間高精度內插所求事件發生的位置,如航空相機曝光瞬間的位置,從而保證了組合系統對整個航線的各個攝影位置的高精度定位。當然GPS本身的采樣頻率也隨著設備的發展不斷提高。
1.4 GPS/IMU組合將降低對慣導系統的要求
長期以來,IMU的高價格一直是限制其廣泛應用的主要原因。而組合系統提供另一種解決方案,利用IMU的速度信號解決動態跟蹤問題,而高精度定位則由GPS來實現,因此可以采用較低性能的IMU,從而降低了組合系統的成本(如圖1、2)。
2 應用案例概況
POSAV510輔助RC30相機在2006年關中地區進行了兩次飛行。根據應用的目的和技術要求,結合實際工作的需要選定測區。測區內分布有水系河流、城鎮市區、山區和主要交通道路等典型地形地貌,較有利于對設備精度的評估。選擇了1∶10000和1∶40000兩個攝影比例尺。如表1所示。
3 應用區控制點的布設
為了對POS的精度作出客觀的評估,在關中某應用區內根據《GB/T13977-921∶5000、1∶10000地形圖航空攝影測量外業規范》、《GB/T13990-92 1∶5000、1∶10000地形圖航空攝影測量內業規范》、《P0S/TRACKER系統應用航空攝影試飛方案》技術設計書進行應用區控制點布設。
3.1 A區控制點布設方案
根據《POS/TRACKER系統應用區航空攝影技術設計書》要求,A區范圍覆蓋6幅(3x2)1∶50000地形圖。依據關于1∶50000比例尺成圖丘陵地和山地的區域網布點及構架航線的布點要求,A區控制點布設如圖3所示:
3.2 B區控制點布設方案
根據《POS/TRACKER系統應用區航空攝影技術設計書》要求,B區范圍覆蓋2幅(1*2)1∶10000地形圖。關于1∶10000比例尺成圖平地的區域網布點要求,同時結合檢校場控制點布設要求。B區控制點布設如圖4所示。
為了提高量測精度,在像片上更準確地判別出控制點的位置,本次應用在B區采用了先布控后飛行的方法。根據控制點周圍的環境情況,對B區100平方公里內的42個控制點分別用埋石、砸木樁及鐵釘的方法將控制點標記到位,其中大標石6個(預計作為檢校場控制點永久保留)、小標石11個、木樁19個、鐵釘6個。
為了使控制點在像片上容易判別,飛行前對測區100平方公里內的42個控制點進行標志布設。根據控制點的情況,采用1 m×1 m的標志布和刷漆等辦法,在飛機起飛前將標布設到位。
4 基準站布設
為保證POS輔助航空攝影飛行,需要在測區內布設基準站。考慮到基準站觀測數據備份和檢核,根據測區大小和應用為中、小比例尺航攝的特點,按照GB/T18314與GJB2228-1994規定的GPS基準站選址原則,結合已知大地測量控制成果,并經過現場踏勘,在攝區內布設1個地面GPS基準站。同時為了驗證基準站距離對測量精度的影響,在寶雞(距測區約200 km)和鄭州(距測區約500 km)地區分別布設長基線和超長基線GPS基準站。
5 航攝飛行
根據《POS/TRACKER系統應用區航空攝影技術設計書》和《POS/TRACKER系統應用區航空攝影實施計劃》,共飛行5架次,完成了應用區1∶10000及1∶40000的航攝工作,獲取了1∶10000、1∶40000有效黑白像片323片,l∶10000彩色有效像片133片隨后再次完成POS輔助RC30相機B區1∶10000飛行。
6 POS外方位元素解算
(l)偏心角解算。在1∶10000黑白影像掃描完畢,獲得檢校場像控測量數據以及檢校場空三加密數據后,結合POS原始數據及基準站數據,利用PosPac軟件中的PosGPs、PosPro及CalQc模塊對偏心角進行解算,獲得了305 mm鏡頭進行1∶10000飛行時的偏心角。同時解算出152 mm鏡頭進行1∶40000飛行時的偏心角。
(2)像片外方位元素的解算。將獲得的偏心角輸入PosPac軟件的PosPEO模塊進行解算,獲得像片的外方位元素EO。
7 空三處理
由于現有的海拉瓦軟件和適普軟件都不支持POS數據的空三處理,因此數據后期的空三解算采用了Leica公司的LPS軟件。在LPS中建立與EO數據坐標相一致的工程,進行了直接定向法和POS輔助空三法兩種方法的應用。
直接定向法。在LPS中建立工程,輸入應用區影像,生成縮小片。在自動完成內定向后,在Fiducial orientation and Exterior Orientation Parameter Editor直接輸入EO解算出的外方位元素,將其作為確定值,應用區的立體即可完全恢復,最終進行精度檢測。
POS輔助空三法。前期與直接定向法一致,不過在輸入外方位元素后,將其設為初始值,再按直接定向法檢測出的精度給出一個外方位元素合適的標準方差。進入Orima軟件,通過APM選點,判讀合適的控制點,進行平差解算,最后將結果寫出。退回到LPS中,進行精度檢測。應用進行了僅有連接點無控制的平差、加入1個控制點的平差、加入4個控制點的平差。
8 POS數據直接定向精度分析研究
在內定向結束后,輸入RC30的POS數據"按照LPS中影像的數據順序,依次將其對應的EO數據拷貝到相應的位置,獲得POSEO數據直接定向的結果。從表2中可以看出。
(1)200X年B區直接定向,精度已經可以滿足1∶10000成圖要求;
(2)200X年B區直接定向,平面精度可以滿足1∶10000成圖要求,但高程精度超限。這是因為我國的外業大地高均為ITRF97或與其相似的框架下的大地高,而我們所采用的EO數據的大地高是初始WGS84的大地高,兩者之間有固定差,在引入一個控制點平差后,高程精度馬上符合精度要求。
9 結語
通過本次課題應用精度分析,POS輔助RC3相機航攝,在成小于1∶10000地形圖時,可采用直接定向的方法。在成1∶10000或更大比例尺地形圖時,應采用POS輔助空中三角測量的方法。
參考文獻
[1] 劉軍,王冬紅,劉敬賢,等.IMU/DGPS系統輔助ADS40三線陣影像的區域網平差[J].測繪學報,2009(1).
[2] 馬紅濤,余濤,鄭逢斌,等.基于IMU/DGPS的航空遙感影像快速糾正方法[J].光盤技術,2009(1).
[3] 蔡文惠,梁國華.IMU/DGPS輔助航空攝影測量應用探討[J].測繪通報,2009(4).
[4] 呂亞軍.IMU/DGPS輔助大比例尺航空攝影檢效場布設的研究[J].測繪技術裝備,2009(1).
[5] 張寰,賈滿.IMU/DGPS輔助航空攝影測量在線路工程測量的應用[J].礦山測量,2009(2).
[6] 胡震天,黃炳強,王文瑞.基于IMU/DGPS輔助航測技術的大比例尺地形圖測繪的應用研究[J].城市勘測,2009(2).
[7] 王鐵軍,鄭福海,王俊杰.IMU/DGPS輔助空中三角測量精度分析[J].地理信息世界,2009(4).
[8] 郭大海,吳立新,王建超,等.IMU/DGPS輔助航空攝影新技術的應用[J].國土資源遙感,2006(1).
[9] 嚴海英,鄧新安,石潔.IMU/DGPS輔助航測技術在1:1萬航測成圖中的應用試驗[J].測繪通報,2007(2).
[10] 沈高鈺.航測空中三角測量新思路研究[J].科技資訊,2011(8).
[11] 易映輝,肖遠煥.基于航測實例的IMU/DGPS輔助航空攝影測量技術探討[J].科技創新導報,2010(11).
[12] 呂亞軍.IMU/DGPS輔助大比例尺航空攝影檢效場布設的研究[J].測繪技術裝備,2009(1).
[中圖分類號] P217 [文獻碼] B [文章編號] 1000-405X(2015)-7-199-1
近些年來,人們迎來了信息時代,人類社會也逐漸步入到全方位的信息時代中,新興很多科學技術,并得到了迅速發展,被人們廣泛應用到人類生活之中。攝影測量經過數字攝影測量階段、解析攝影測量階段以及模擬攝影測量階段這三個階段。在攝影測量技術發展期間,從遙感數據源到遙感平臺、遙感器、遙感數據處理、遙感理論基礎探討等,都產生了很大變化。下面,筆者就對攝影測量與遙感當前發展中面臨的問題進行分析。
1攝影測量與遙感發展中存在的問題
1.1遙感技術發展存在的問題
當前形勢下,遙感技術主要被應用到環境保護、城市規劃、土地利用、荒漠化監測、災害監測、環境預報、海洋監測、天氣預報等行業和領域中,遙感技術為社會發展帶來了很大的經濟效益。特別是航天遙感技術的提出和發展,航天遙感技術對衛星遙感進行充分利用,進而獲取各種需要的信息,可以說,航天遙感技術是當前最為有效的方法。
目前,在遙感技術的應用上,還存在一些問題:譬如說過分重視對表面現象的反饋,忽視了內里的規律分析、定量分析等。同時,遙感技術應用中還存在過分單一的問題,這在一定程度上影響了遙感技術作用的發揮,多種遙感技術的一體化綜合應用有助于獲取更加準確的數據資料,提高測量質量。比如說:遙感技術應用到水質的監測中時,進行數據分析多為定性分析,很少進行定量分析;且監測精度不高,存在明顯的經驗、半經驗算法;另外,在監測的數據參數上,主要為透明度、渾濁度、懸浮沉積物、葉綠素等,參數過少,而且監測的波段范圍也不大,主要集中在可見光和近紅外波段范圍。
1.2攝影測量發展存在的問題
我國的攝影測量發展經歷了漫長的歷程,伴隨著我國自動控制技術以及計算機技術的不斷發展,在二十世紀末期,完成了全數字的自動測圖軟件研發和應用,由此,數字攝影測量技術得以迅速發展,數字攝影測量被普遍應用到測量工作之中。在進入到二十一世紀以后,科學技術的不斷提升為攝影測量提供了幫助,使攝影測量也步入到數字化時代中。在數字攝影測量中,傳統的圖像處理從光學儀器上搬到了計算機上,實現了對傳感器空間方位的校正、地形起伏引起像點位移的糾正以及圖像鑲嵌等功能。目前,在攝影測量圖像的處理方面,還存在圖像匹配、不依賴DEM的正射糾正等問題。譬如說:在圖像匹配上,在地形圖上取影像與地形圖上對應同名點作為糾正控制點,這種方法的精度不高,當前在圖像的匹配上依然主要依賴人工方式,而數字化的圖像匹配還有待進一步研究和發展。
另外,攝影測量技術中得數字正射影像圖(DOM)存在嚴重的圖像質量問題,外界環境的諸多因素都會直接影響到圖像的質量,影響攝影測量的精度。譬如:清晰度差、紋理不清晰、重要地物缺失等。實踐經驗表明:原始影像質量、DEM數據質量、攝影處理條件、拼接線、第三方軟件等都會對DOM質量產生影響。
2推動攝影測量與遙感技術發展的策略
近些年,在數據分析、信息服務、獲取和處理數據的過程中,攝影測量與遙感技術都得到了良好發展,獲取數據的裝備也得到了迅速發展,從本質上提升了數據處理系統的自動化程度。
2.1遙感自動定位技術的發展和應用
在攝影測量與遙感技術發展過程中,遙感自動定位技術具有十分重要的地位,不僅能夠對影響目標實際位置進行準確確定,更可以對影響屬性進行準確解譯。將GPS的空中三角測量作為前提和基礎,對慣性導航系統進行充分利用,由此形成了航空影響傳感器,航空影響傳感器將定點攝影成像實現,并且保證定點攝影成像的高精度。在衛星遙感這一前提和基礎下,精度可以實現米級,遙感自動定位技術能夠實現實時數據更新和實時測圖等作業的流程,進而將野外像控測量工作量減少。
2.2在三維模型表面重建中應用攝影測量
在工程勘察、人體重建、人臉重建、醫學重建、文物保護、工業測量以及土建筑重建等方面都均已普遍應用三維物體重建技術。三維物體重建技術通過手持量測的數碼相機實施操作,進而能夠得到多度重疊以及短基線的圖片,通過立體匹配的渠道獲取模型點的數據。利用短基線多影響的數字攝影測量快速三維的重建技術,能夠從本質上將攝影測量無法兼顧遠景和變形問題進行解決,在實施的過程中,通過采取量測數碼相機手持拍攝這一種方式方法,使測量技術更加快速和簡單,并且擁有高度自動化。
2.3構建完善的遙感監測指標體系
為推動遙感技術定量化分析的應用于發展,必須建立起完善的遙控監測指標體系。比如說:在大氣環境的遙感監測中,借助這一指標體系進行后續的定量化分析,掌握大氣環境的變化情況,實現大氣環境監測的集成化發展。一是時間與空間數據的互為彌補和整合,便于相關人員掌握大氣環境;二是互為約束的遙感反演技術。隨著遙感技術和攝影測量技術應用日益廣泛,其不斷融合先進技術,為人類發展帶來更先進的監測技術,推動社會經濟發展和人類進步,而構建監測指標體系則是當前迫切需要解決的一個問題,需要各部門、單位的聯動,全力推動遙感技術的發展,實現遙感技術的變革。
3結語
綜上,雖然如今的攝影測量與遙感技術發展速度相對來說比較快,并且已經被應用到測繪工作中,逐漸實現了智能化發展和數字化發展。我國攝影測量與遙感存在設備種類單一以及生產效率低下等問題,這些問題和信息產業發展相違背,不能達到國際的標準水平。因此,我們要集中優勢力量,開展跨學科合作。
參考文獻
[1]克里斯蒂安?海普克,唐糧.攝影測量與遙感之發展趨勢和展望[J].地理信息世界,2011,09(02).
中圖分類號:P23 文獻標識碼:A 文章編號:1672-3791(2014)01(c)-0060-02
航空攝影測量技術是在飛機上利用航攝相機對地面連續攝取像片,結合地面控制點測量、處理和立體測繪等步驟,繪制出地形圖的作業,是我國獲取基礎地理信息數據的主要手段之一。目前,我國重大自然災害監測與預警、資源利用與環境監測等領域都需要大量的高分辨率、高精度的地理信息數據,這些數據與我國經濟的可持續發展緊緊相關。
傳統航空攝影測量一般需要使用野外控制點并通過空中三角測量加密求解外方位元素,而野外控制點的布設工作繁瑣,在荒漠、高山等困難地區野外控制點更是難以布設,因此,盡量減少乃至擺脫對野外控制點的依賴而直接對像片定向一直是攝影測量的重要研究方向之一。為此,人們一直試圖在航空攝影飛行過程中直接記錄或確定航攝相機的位置和方向,并利用這些定向數據實現航攝像片的絕對定向。
20世紀90年代,GPS(Global Position System,全球定位系統)輔助空中三角測量的方法得到了廣泛應用,利用GPS獲得的定位信息用來輔助空中三角測量,展現了導航技術在測繪領域的應用前景。GPS技術雖然解決了像片的定位問題,但是無法獲取像片的姿態參數,不能徹底擺脫地面控制。隨著航空攝影測量技術和慣性導航技術的發展,一種新的方法開始應用于航空攝影測量―― 定位定向系統(Position and Orientation System,簡稱POS系統)輔助航空攝影。機載POS系統集GPS技術與慣性導航技術于一體,使準確地獲取航攝相機曝光時刻的外方位元素(GPS測量得到位置參數,慣性導航系統得到姿態參數)成為可能,從而實現了無(或少量)地面控制點,甚至無需空中三角測量加密工序,即可直接定向測圖,從而大大縮短航空攝影作業周期、提高生產效率、降低成本。因此,POS系統的出現,將從根本上改變傳統航空攝影的方法,進而引起航空攝影理論與技術的重大飛躍。隨著計算機技術的發展及其慣性、GPS器件精度水平的提高,POS無論定位定向精度還是實時數據處理能力都會有質的提高,將會在航空攝影測繪方面發揮越來越重要的作用。POS系統高精度定位定向技術是POS系統應用的關鍵技術,它的研究可以極大的推動POS系統的發展。
1 POS工作原理
IMU慣性測量單元最大優點是不依賴于任何外界信息,能夠進行完全自主的導航。慣性測量單元能夠連續長時間的工作,可以提供多種導航信息如位置、速度、航程、航向,還可以提供水平及方位基準,精度較高。但是,慣性測量單元的精度主要取決于慣性器件(陀螺儀和加速度計)的精度,并且其定位誤差隨時間積累,精度逐漸降低,這對于需要長時間工作的情況是極為不利的。而且其初始對準時間長,所以想到利用其它定位手段作為參考信息源,定期或不定期地對慣性測量單元進行綜合校正,對慣性器件的漂移進行補償。
GPS衛星導航系統具有定位精度高的特點,而且能夠進行全球、全天候、全天時、多維連續定位,其精度不隨時間變化。然而,GPS是非自主式的系統,不能提供諸如載體姿態等參數,運動載體上的GPS接收機不易捕獲和穩定跟蹤衛星信號,動態環境造成中信噪比下降。這些原因都容易產生周跳。而且由于GPS信號在傳播途中的干擾,使得系統定位精度有所下降,定位結果較為離散。
如上所述,GPS和IMU慣性測量單元各有所長,具有可互補的特點,兩者的組合不僅具有兩個獨立系統各自的主要優點,而且隨著組合水平的提高,它們之間信息傳遞、融合、使用的加強,組合系統的總體性能要遠優于任一獨立系統。
組合導航把無線電導航長期精度高與慣性測量短期精度高和不受干擾的優點結合起來,因而GPS與IMU的組合被認為是目前導航領域最理想的組合方式,其基本原理如圖1所示。POS都是采用這樣的組合系統,其優點主要表現在以下幾方面。
(1)GPS/IMU組合提高了系統的精度。
高精度GPS信息作為外部測量信息輸入系統,在運動過程中頻繁修正IMU測量值,以控制減弱其隨時間積累的誤差;而短時間內IMU定位結果可以很好的解決GPS動態環境中由于信號失鎖和周跳導致的精度跳躍下降問題。因而,GPS/IMU組合測量誤差實際上比單獨的GPS或IMU的誤差都小。
(2)GPS/IMU組合加強系統的抗干擾能力。
由于IMU可以獨立進行導航,因而當GPS信號受到干擾時,IMU不僅能提供導航信息,而且其導航解可作為輔助信息,對GPS碼和載波的再捕獲起輔助作用,大大縮短了GPS恢復工作的時間,提高了GPS接收機的跟蹤能力。而GPS信息對IMU的輔助可使IMU在運動中不斷進行初始對準。
(3)GPS/IMU組合解決了GPS動態應用采樣頻率低的問題。
由于GPS的數據采樣率低,不能達到某些動態應用中的要求,這時高頻IMU數據可以在GPS定位結果之間高精度內插所求事件發生的位置,如航空相機曝光瞬間的位置,從而保證了組合系統對整個航線的各個攝影位置的高精度定位。當然GPS本身的采樣頻率也隨著設備的發展不斷提高。
(4)GPS/IMU組合將降低對慣導系統的要求。
長期以來,IMU的高價格一直是限制其廣泛應用的主要原因。而組合系統提供另一種解決方案,利用IMU的速度信號解決動態跟蹤問題,而高精度定位則由GPS來實現,因此可以采用較低性能的IMU,從而降低了組合系統的成本。
2 試驗概況
POSAV510輔助RC30相機在2006年關中地區進行了兩次試驗飛行。根據試驗的目的和技術要求,結合實際工作的需要選定試驗測區。測區內分布有水系河流、城鎮市區、山區和主要交通道路等典型地形地貌,較有利于對設備精度的評估。選擇了1∶10000和1∶40000兩個攝影比例尺。如表1所示。
3 試驗區控制點的布設
為了對POS的精度做出客觀的評估,在關中某試驗區內根據《GB/T13977-921∶5000、1∶10000地形圖航空攝影測量外業規范》《GB/T13990-92 1∶5000、1∶10000地形圖航空攝影測量內業規范》《P0S/TRACKER系統應用航空攝影試飛方案》技術設計書進行試驗區控制點布設。
3.1 A區控制點布設方案
根據《POS/TRACKER系統試驗區航空攝影技術設計書》要求,A區范圍覆蓋6幅(3×2)1∶50000地形圖。依據關于1∶50000比例尺成圖丘陵地和山地的區域網布點及構架航線的布點要求,A區控制點布設如圖1所示。
3.2 B區控制點布設方案
根據《POS/TRACKER系統試驗區航空攝影技術設計書》要求,B區范圍覆蓋2幅(1×2)1∶10000地形圖。關于1∶10000比例尺成圖平地的區域網布點要求,同時結合檢校場控制點布設要求。B區控制點布設如圖2所示。
為了提高量測精度,在像片上更準確地判別出控制點的位置,本次試驗在B區采用了先布控后飛行的方法。根據控制點周圍的環境情況,對B區100 km2內的42個控制點分別用埋石、砸木樁及鐵釘的方法將控制點標記到位,其中大標石6個(預計作為檢校場控制點永久保留)、小標石11個、木樁19個、鐵釘6個。
為了使控制點在像片上容易判別,飛行前對測區100 km2內的42個控制點進行標志布設。根據控制點的情況,采用1 m×1 m的標志布和刷漆等辦法,在飛機起飛前將標布設到位。
4 基準站布設
為保證POS輔助航空攝影飛行,需要在測區內布設基準站。考慮到基準站觀測數據備份和檢核,根據測區大小和試驗為中、小比例尺航攝的特點,按照GB/T18314與GJB2228-1994規定的GPS基準站選址原則,結合已知大地測量控制成果,并經過現場踏勘,在攝區內布設1個地面GPS基準站。同時為了驗證基準站距離對測量精度的影響,在寶雞(距測區約200 km)和鄭州(距測區約500 km)地區分別布設長基線和超長基線GPS基準站。
5 航攝飛行
根據《POS/TRACKER系統試驗區航空攝影技術設計書》和《POS/TRACKER系統試驗區航空攝影實施計劃》,共飛行5架次,完成了試驗區1∶10000及1∶40000的航攝工作,獲取了1∶10000、1∶40000有效黑白像片323片,l∶10000彩色有效像片133片隨后再次完成POS輔助RC30相機B區1∶10000飛行。
6 POS外方位元素解算
(l)偏心角解算。在1∶10000黑白影像掃描完畢,獲得檢校場像控測量數據以及檢校場空三加密數據后,結合POS原始數據及基準站數據,利用PosPac軟件中的PosGPs、PosPro及CalQc模塊對偏心角進行解算,獲得了305 mm鏡頭進行1∶10000飛行時的偏心角。同時解算出152 mm鏡頭進行1∶40000飛行時的偏心角。
(2)像片外方位元素的解算。將獲得的偏心角輸入PosPac軟件的PosPEO模塊進行解算,獲得像片的外方位元素EO。
7 空三處理
由于現有的海拉瓦軟件和適普軟件都不支持POS數據的空三處理,因此,數據后期的空三解算采用了Leica公司的LPS軟件。在LPS中建立與EO數據坐標相一致的工程,進行了直接定向法和POS輔助空三法兩種方法的試驗。
直接定向法。在LPS中建立工程,輸入試驗區影像,生成縮小片。在自動完成內定向后,在Fiducial orientation and Exterior Orientation Parameter Editor直接輸入EO解算出的外方位元素,將其作為確定值,試驗區的立體即可完全恢復,最終進行精度檢測。
POS輔助空三法。前期與直接定向法一致,不過在輸入外方位元素后,將其設為初始值,再按直接定向法檢測出的精度給出一個外方位元素合適的標準方差。進入Orima軟件,通過APM選點,判讀合適的控制點,進行平差解算,最后將結果寫出。退回到LPS中,進行精度檢測。試驗進行了僅有連接點無控制的平差、加入1個控制點的平差、加入4個控制點的平差。
8 POS數據直接定向精度分析研究
在內定向結束后,輸入RC30的POS數據按照LPS中影像的數據順序,依次將其對應的EO數據拷貝到相應的位置,獲得POSEO數據直接定向的結果。從表2中可以看出:
(1)200X年B區直接定向,精度已經可以滿足1∶10000成圖要求。
(2)200X年B區直接定向,平面精度可以滿足1∶10000成圖要求,但高程精度超限。這是因為我國的外業大地高均為ITRF97或與其相似的框架下的大地高,而我們所采用的EO數據的大地高是初始WGS84的大地高,兩者之間有固定差,在引入一個控制點平差后,高程精度馬上符合精度要求。
9 結論
通過本次課題試驗精度分析,POS輔助RC3相機航攝,在成小于1∶10000地形圖時,可采用直接定向的方法。在成1∶10000或更大比例尺地形圖時,應采用POS輔助空中三角測量的方法。
一.測繪遙感應用現狀
1測繪遙感應用不夠廣泛
從遙感技術的發展來看,其發展前景比較樂觀,而且技術的應用領域和應用水平不斷在拓展。但是就當前遙感技術的應用現狀來看,依然面臨著不少問題,最主要的就是實際應用范圍不夠廣泛,遙感技術在當今依然是一項不為人所熟知的測繪技術。這個問題主要表現在當前的測繪工作,比如地形地質勘測、工程勘探等還是習慣采用傳統的測繪技術,對于遙感技術還比較陌生,對其應用就更加受限制,觀念上的制約以及對遙感技術的不熟悉制約了遙感技術在更多的領域發揮其作用,也不利于遙感技術的大力推廣。
(1)當前的遙感技術功能已經波及到許多勘測領域,其全天候、實時性以及監測數據受人為干預較少的優勢是傳統人工測繪技術難以達到的,測繪數據的精度高、誤差較少等也會大大提高監測數據的科學性和實用性,如果許多測繪領域依然采用傳統的測繪手段,遙感技術的功能就難以全面體現,將不利于遙感技術的深度開發,挫傷遙感技術研發的積極性
(2)遙感技術應用不廣泛也不利用空間信息技術的發展和應用。遙感技術是以空間信息技術為基礎的,他體現了空間信息技術在現代空間勘測和開發中的諸多優點,并且是對空間信息技術功能的具體體現和延伸。遙感技術需要GPS技術進行空間導航和定位,這直接影響著遙感技術定位和勘測的精度與準確性。
2. 遙感工作資金造價高
在實際工作當中,有些測繪項目因為遙感技術價格高等問題望而怯步,隨著近幾年來計算機技術以及遙感技術的快速發展,促成遙感技術由最開始的理論層面正式步入實質階段,其具體的環境資源、災害監測、地質勘探以及地理測繪方面的檢測功能逐漸明顯。但是,仍然遙感技術造價高、花費大等特點仍然制約了其發展。此外,在我國,遙感技術主要應用在一些重點研發的科研項目上,譬如說資源勘探、環境污染以及地址災害等方面,而用于煤礦開采或工程地址檢測方面的則少之又少。
3.遙感信息源空間分辨率較低,應用水平較低
遙感技術在環境污染檢測以及地質災害勘測方面的優勢將會促進我國環境保護失業用戶地質災害研究事業的長遠發展,所以,從某種方面來看,提高遙感技術信息員的空間分比率,在測量水平、覆蓋范圍、以及信息數據準確性方面有著不容忽視的作用。
二.測繪技術在地籍測量中的應用
1. 地籍測量中應用攝影測量技術
傳統地籍測量獲得的數據通常是不準確的,并在一定程度上影響測繪質量,所以為了提高數據的準確性,現代地籍測量需要利用攝影測量技術。這種技術具有非常簡單的操作,極易被測繪人員掌握,在測量過程中幾乎不會受到外界的干擾,因此,相對容易獲得準確數據。另外,還可以實時更新攝影測量獲得的數據,其提供的信息量很大,也具有相對突出的幾何特點,具有清晰直觀的數字,非常容易讀取,避免通視造成的影響。可是這種技術也有缺點,因為在進行地面攝影期間,前面的物體對后面的物體有一定的遮擋作用,增加了攝影的難度。如果攝影在空中進行,利用飛機運載航空攝影機,可是飛機不能保持嚴格規范的水平度,影響曝光。可是,在應用先進技術之后,則能夠有效解決這些弊端,提供更加準確的數據給地籍測量。
2.地籍測量中應用數字攝影測量和遙感模式
地籍測量應用數字攝影測量和遙感模式是一種發展趨勢,其空間攝像信息方式使用更多的傳感器和瓶體,向多時相和高分辨率發展。高分辨率的衛星遙感影像提供空間信息獲取的主要數據。目前,有很多手段能夠獲得數據,促使地籍測量線劃圖和各種專題的地籍圖更易獲得。此外,地籍測量應用衛星遙感技術可以實時監測利用土地資源的情況,為地籍測量提供更加及時的信息。因為地籍測量要求很高的精度,數據采集設備應用數字攝影測量能夠獲取大比例尺的航空像片,接著通過對應技術分析像片,以獲得其中的地籍數據,然后將其空三加密確定為控制目標點,利用專門軟件處理數字攝影測量的數據,為地籍內外的測量作業提供便利。以這種模式獲得的地籍圖能夠體現出豐富的信息,實時性也很強,既具有線劃地圖的幾何特點,也具有數字的直觀特點,還對地籍圖的界址點有完善作用,不會受到通視條件的影響,將不包含GPS像控以及地籍權屬調查的所有工作完成,降低勞動強度,提高工作效率,能夠獲得很好的發展。
3.應用遙感技術開展地質調查是相當必要.也是社會經濟發展的客觀要求和需要。就當前社會發展狀況來看,遙感技術的應用有著廣闊的發展前景,相關人員要從加強遙感技術深度研究這一方面出發,提高遙感技術的測量精度,進一步拓展其應用領域。(1)國家相關部門要加強對遙感技術開發研究的鼓勵和推動,采取相關措施推動遙感技術的普及和應用。比如,利用政策優勢,鼓勵相關部門在開展測繪工作者運用遙感技術,將遙感技術從示范性試驗階段推動到大范圍應用普及階段,使遙感技術能夠真正發揮其技術的優越性,對傳統測繪手段進行革命性的改造和開創。這將會大大推動遙感技術與實際測繪工作的聯系水平,不僅有利于遙感技術發揮其測繪水平上的優勢,更有利于在實踐中發掘遙感技術的弊端,從而推動遙感技術在實踐中不斷完善和發展。(2)加大對遙感技術的資金投入也是深度研發遙感技術的關鍵舉措。一項技術從開始研發到投入使用要歷經漫長的過程,遙感技術從最初出現到現在也已經經歷了將近半個世紀的時間,我國也逐漸成為遙感技術大國。但是僅僅如此是不夠,我國必須向著遙感強國的目標前進,因此加強技術的深度研發是極其必要的。
4.大力推廣遙感技術,加大遙感技術普及力度
遙感技術只有在大力推廣中才能顯示其技術的活力和對測繪工作的廣泛適應力。當前遙感技術已經凸顯出其難以比擬的技術優勢和環境適應力,比如,能夠適用各種復雜地形的勘探工作,能夠實現對火災、氣象災害、地質災害過程的實時檢測,動態獲取相關數據,為開展災害研究和建立災害防御體系提供便利等,因此必須要大力推廣遙感技術,提高普及程度。
三 結束語
總之,在當今的測繪工作中,應用遙感技術已經成為社會發展的必然趨勢。隨著計算機的普及與科技的進步,遙感技術的覆蓋范圍將會大大增加,實現遙感工程司、災害、氣象、地質遺跡環境資源監測等項目,拓展遙感技術的應用范圍,讓其充分發揮自身優勢,在災害預防、社會發展以及國民經濟上做出貢獻。
參考文獻: